

Agenda

1. What is a genome-wide association study (GWAS)?

Agenda

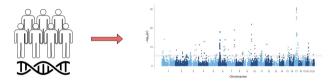
1. What is a genome-wide association study (GWAS)?

AMP overview. Making AMP approach scalable and stable for the GWAS 2.inference task

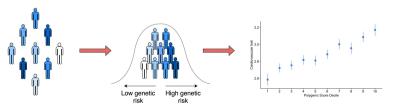
Agenda

1. What is a genome-wide association study (GWAS)?

AMP overview. Making AMP approach scalable and stable for the GWAS inference task



3. Comparison to the state-of-the-art methods (regenie, GMRM)



1. Genome-Wide Association Studies

Step 1: Genome-wide association studies in adult populations from the UK Biobank

Step 2: Whole genome polygenic risk scores

■ almost no limit to the amount of measured genetic variants (hundreds of millions; more genetic variants ⇒ better generalization), but limited sample size

- almost no limit to the amount of measured genetic variants (hundreds of millions; more genetic variants ⇒ better generalization), but limited sample size
- Data format (genotype matrices normalized column-wise):

$$\mathbf{X}_{ij} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases} \implies \{0, 1, 2\}^{N \times P} \ni \mathbf{X} = \underbrace{\begin{bmatrix} 1 & 2 & \dots & 0 \\ 0 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 2 & \dots & 2 \end{bmatrix}}_{\sim 10^6} \right\} \sim 10^5$$

- almost no limit to the amount of measured genetic variants (hundreds of millions; more genetic variants ⇒ better generalization), but limited sample size
- Data format (genotype matrices normalized column-wise):

$$\mathbf{X}_{ij} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases} \implies \mathbf{X} = \underbrace{\begin{bmatrix} 1.886 & 4.242 & \dots & -0.472 \\ -0.472 & -1.414 & \dots & 1.886 \\ \vdots & \vdots & \ddots & \vdots \\ -0.472 & 4.242 & \dots & 4.243 \end{bmatrix}}_{\sim 10^6} \right\} \sim 10^5$$

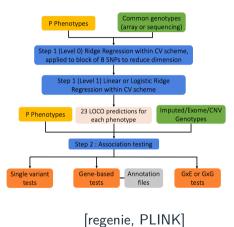
- almost no limit to the amount of measured genetic variants (hundreds of millions; more genetic variants ⇒ better generalization), but limited sample size
- Data format (genotype matrices normalized column-wise):

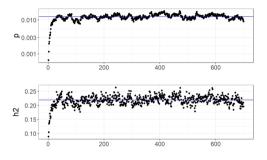
$$\mathbf{X}_{ij} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases} \implies \mathbf{X} = \underbrace{\begin{bmatrix} 1.886 & 4.242 & \dots & -0.472 \\ -0.472 & -1.414 & \dots & 1.886 \\ \vdots & \vdots & \ddots & \vdots \\ -0.472 & 4.242 & \dots & 4.243 \end{bmatrix}}_{\sim 10^6} \right\} \sim 10^5$$

Bayesian Linear Regression for the individual-level model:

$$y_i = \langle \textbf{X}(i,:), \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \dots, N\}$$

- almost no limit to the amount of measured genetic variants (hundreds of millions; more genetic variants ⇒ better generalization), but limited sample size
- Data format (genotype matrices normalized column-wise):


$$\mathbf{X}_{ij} = \begin{cases} 2, & aa \\ 1, & Aa \\ 0, & AA \end{cases} \implies \mathbf{X} = \underbrace{\begin{bmatrix} 1.886 & 4.242 & \dots & -0.472 \\ -0.472 & -1.414 & \dots & 1.886 \\ \vdots & \vdots & \ddots & \vdots \\ -0.472 & 4.242 & \dots & 4.243 \end{bmatrix}}_{\sim 10^6} \right\} \sim 10^5$$


Bayesian Linear Regression for the individual-level model:

$$\begin{split} y_i &= \langle \textbf{X}(i,:), \beta \rangle + \epsilon_i \text{ for } i \in [N] = \{1, \dots, N\} \quad \text{ and } \\ \beta_j &\sim (1 - \pmb{\lambda}) \cdot \delta_0(\cdot) + \pmb{\lambda} \cdot \sum_{i=1}^L \pi_i \cdot \mathcal{N}(\cdot, 0, \sigma_i^2), \quad \epsilon_i \sim \mathcal{N}(0, \gamma_\epsilon^{-1}) \end{split}$$

Inference of Genetic Effects via Approximate Message Passing

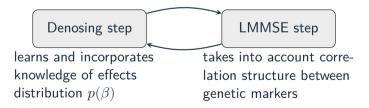
Prior Work

[LDpred2, SBayesR, SBayesRC, GMRM]

 family of iterative algorithms that incorporate structural information about genetic signal

- family of iterative algorithms that incorporate structural information about genetic signal
- linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation

- family of iterative algorithms that incorporate structural information about genetic signal
- linear models [Kab03, BM12, BM11, DMM09, KMS+12], generalized linear models [BKM+19, MLKZ20, Ran11, SR14, SC19] and low-rank matrix estimation
- achieves Bayes-optimal performance for some models [DM14, DJM13, BKM+19]


■ Problem: correlation structure between columns of X?

- Problem: correlation structure between columns of X?
- X right-orthogonally invariant [RSF16, T17]: distributions of objects in the high-dimensional limit precisely characterized by a *state evolution* recursion

- Problem: correlation structure between columns of X?
- X right-orthogonally invariant [RSF16, T17]: distributions of objects in the high-dimensional limit precisely characterized by a *state evolution* recursion

1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000 participants from UK Biobank study)

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000 participants from UK Biobank study)
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows $(\sim 400,000 \text{ out of } 460,000 \text{ participants from UK Biobank study})$
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000participants from UK Biobank study)
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

4. Damping of denoised marker effects (momentum)

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000participants from UK Biobank study)
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

- 4. Damping of denoised marker effects (momentum)
- 5. Warm-start of conjugate gradients for LMMSE calculation [SD20]

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000participants from UK Biobank study)
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

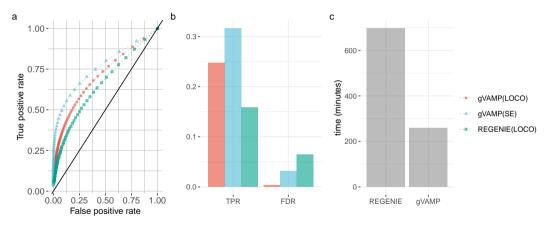
- 4. Damping of denoised marker effects (momentum)
- 5. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 6. Re-using Hutchinson estimator

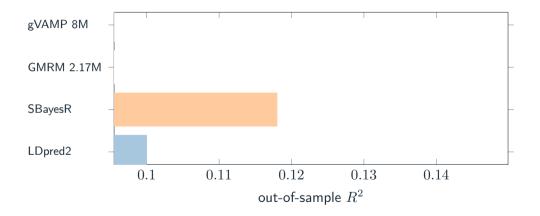
- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows ($\sim 400,000$ out of 460,000participants from UK Biobank study)
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

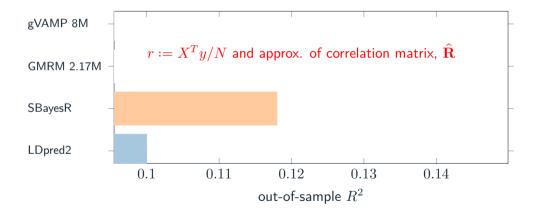
- 4. Damping of denoised marker effects (momentum)
- 5. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 6. Re-using Hutchinson estimator
- 7. MPI + OpenMP

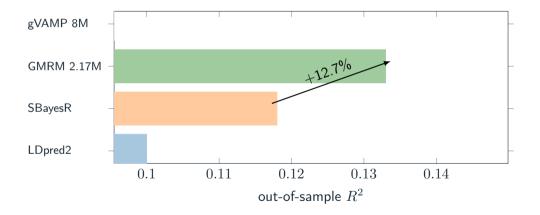
genomic VAMP

- 1. Filtering the normalized genotype matrix for first-degree relatives to reduce the correlation between rows $(\sim 400,000 \text{ out of } 460,000 \text{ participants from UK Biobank study})$
- 2. Initialization matters (sparsity \sim 50k genetic positions, geometric sequence for prior mixture probabilites and variances)
- 3. Auto-tuning of denoising signal error precision [FSR+17] combined with EM steps [VS12, FS17] that updates estimate of $p(\beta)$

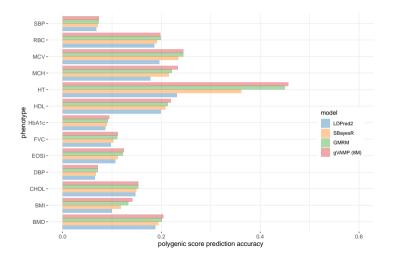

- 4. Damping of denoised marker effects (momentum)
- 5. Warm-start of conjugate gradients for LMMSE calculation [SD20]
- 6. Re-using Hutchinson estimator
- 7. MPI + OpenMP
- 8. data processing by using a lookup table + SIMD:


$$(\underbrace{0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0}_{\downarrow})$$


$$(\underbrace{NaN \ 2 \ 0 \ 1}_{\downarrow})$$



$$y^{(i)} := y - \mathbf{X}_{\backslash \mathsf{chr}(i)} \hat{\beta}_{\backslash \mathsf{chr}(i)} \sim \mathbf{X}(:,i)$$



Prediction accuracy

SBP: Systolic blood pressure RBC: Red blood cell count MCV: Mean corpuscular volume MCH: Mean corpuscular haemoglobin HT: Standing height HDL: High density lipoprotein HbA1c: Glycated haemoglobin FVC: Forced vital capacity EOSI: Eosinophill count DBP: Diastolic blood pressure CHOL: Cholesterol BMI: Body mass index BMD: Heel bone mineral density

Summary & Future Directions

Inference of Genetic Effects via Approximate Message Passing

Summary & Future Directions

 gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this

Summary & Future Directions

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

1. summary statistics & meta analysis models

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- 1. summary statistics & meta analysis models
 - access only to $r:=X^Ty/N$ and an approximation of a correlation matrix, called $\hat{\mathbf{R}}$
 - merging information from different databases/cohorts

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- 1. summary statistics & meta analysis models
- 2. time-to-event models

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- 1. summary statistics & meta analysis models
- 2. time-to-event models

$$\log y_i = \mu + \langle x_i, \beta \rangle + \frac{w_i}{\alpha} + \frac{K}{\alpha}$$

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- 1. summary statistics & meta analysis models
- 2. time-to-event models

$$\log y_i = \mu + \langle x_i, \beta \rangle + \frac{w_i}{\alpha} + \frac{K}{\alpha}$$

3. using gVAMP on WGS data (between 10 - 12M genetic variants)

- gVAMP requires less than a day to model 8.4 million imputed genetic variants jointly in over 400,000 UK Biobank participants. Other methods such as regenie, GMRM can not do this
- exhibits lower FDR, greater TPR than regenie
- capable of analysing heterogeneous data (WES, X chromosome data)

- 1. summary statistics & meta analysis models
- 2. time-to-event models

$$\log y_i = \mu + \langle x_i, \beta \rangle + \frac{w_i}{\alpha} + \frac{K}{\alpha}$$

- 3. using gVAMP on WGS data (between 10 12M genetic variants)
- 4. low-complexity alternatives to VAMP?

gVAMP git repo: https://github.com/medical-genomics-group/gVAMP

medical-genomics-group / gVA	MP (Public)	Q. Not	fastions V fost 1 🕅 🕸 far 6 🔹
Code 💿 Issues 1% Pull requests	🛈 Actions 📋 Projects 💷 Wiki 🔘 Security	🖂 Insights	
P main + P 4 Branches © 0 Tags	Q ₁ Go to He	O Code +	About
🛞 etggroup Marga put request #1 from m	edical-penomics-group/mul 🗰 6637661-4 months epo	🕤 #7 Commits	Vector Approximate Message Passing inference framework for GWAS
C READWEINS	added seed, default 23mintures, R2 storing, defaul	5 months ago	Pradme Activity Catalon properties Catalon Security Gatas Swatching Y stock Propertiesationy
🗅 data.cpp	type in data opp LOCO calculation	4 months ago	
🗅 data.hpp	multitrait LOCO and LOO testing added	4 months ago	
denoise007.cpp	latest updated 10/23	5 months ago	
🗅 dotp.,httpp	latest updated 10/23	5 months ago	
🗅 main_meth_excep	latest updated 10/23	5 months ago	
🗅 main_real.cop	multituit LOCO and LOO testing added	4 months ago	Releases
C main, mail, probib.opp	latest updated 10/23	5 months ago	No releases published
🗅 rejustep	latest updated 10/23	5 months ago	Packages
C options.cpp	added seed, default 23mintures, R2 storing, defaul	5 months ago	No packages published
C options.hpp	realitic sims added, debugged prev changes	5 months ago	Contributors 2
🗅 simopp	invititiait LOCO and LOO testing added	4 months ago	n ADopage ADopage Complex Trait Genetics Group
sim, heavy, tails.cpp	invititiait LOCO and LOO testing added	4 months ago	
🗅 sin_probit.cpp	latest updated 90/23	5 months ago	
🗅 sinurealistic.opp	multituit LOCO and LOO testing added	4 months ago	Languages
🗅 utilities.cpp	prior init problem solved	5 months ago	• C++ 100.0%
🗅 utilitechop	prior init problem solved	5 months ago	
C samp.opp	multitrait LOCO and LOO testing added	4 months ago	
🗅 vampliop	realitic sims added, debugged prev changes	5 months ago	
D varro, Huber.cop	latest updated 10/23	5 months app	

gVAMP git repo: https://github.com/medical-genomics-group/gVAMP

medical-genomics-group / gVAI	MP (Note)	Q Nush	ations 🕴 Fox (1) 🕅 Star (6)
○ Code ⊙ Issues 13 Pull requests 1	🗇 Actions 🗄 Projects 💷 Wiki 🔘 Security	🗠 Insights	
P main + P 4 Branches © 0 Tags	Q ₁ Go to Ne	O Code +	About
🛞 etggroup Marga put request #1 from ma	dical-penomica-group/mul 🚥 6637641 -4 months age	🕤 87 Commits	Vector Approximate Message Passing inference framework for GWAS
C READINE and	added seed, default 23mintures, R2 storing. defaul	5 months ago	Peadine Activity Catalon properties Gatas Switching V Stock Peaport respectives
🗅 data.opp	typo in data opp LOCO calculation	4 months ago	
🗅 data.hpp	multitrait LOCO and LOO testing added	4 months ago	
denoise00/T.opp	latest updated 10/23	5 months ago	
🗅 dotp.,httpp	latest updated 10/23	5 months ago	
D main_meth_excep	latest updated 10/23	5 months ago	
🗅 main_real.cop	inultituit LOCO and LOO testing added	4 months ago	Releases No releases published
C main_mail_probit.opp	latert updated 10/23	5 months ago	
C reclation	latest updated 10/23	5 months ago	Packages
C options.cpp	added seed, default 23mintures, R2 storing, defaul	5 months ago	No packages published
C) optionshipp	realitic sims added, debugged prev changes	5 months ago	Contributors (2)
D sincep	multitrait LOCO and LOO testing added	4 months ago	n ADepape
Sim,heavy,tails.cpp	multitrait LOCO and LOO testing added	4 months ago	togroup Complex Trait Genetics Gri
🗅 sinuprobit.opp	latest updated 10/23	5 months ago	
🗅 sim_melistic.cpp	multitrait LOCO and LOO testing added	4 months ago	Languages
C utilities.cpp	prior init problem solved	5 months ago	• C++ 100.0%
C utitieshop	prior init problem solved	5 months ago	
C samplings	multitrait LOCD and LOO testing added	4 months ago	
🗅 vamp/op	realitic sims added, debugged prev changes	5 months ago	
D varro, Huber.cop	latest updated 10/23	5 months app	

The End

Thanks for your attention!

Extra Slides

REGENIE overview

- Step 1: (Inference)
 - (Ridge regression): reads P markers in blocks of B = 1000 consecutive markers and

$$\mathbf{X} = \begin{pmatrix} B & B & \dots & B \\ 0 & 4.242 & \dots & -1.414 \\ -1.414 & -1.414 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1.414 & 4.242 & \dots & 1.414 \end{pmatrix}$$

for $\tau \in \{\tau_1, \dots, \tau_J\}$ and block index b calculate $\hat{\beta}_{\tau,b} = (\mathbf{X}_b^T \mathbf{X}_b + \tau I)^{-1} \mathbf{X}_b^T y$

- (Cross-validation): fitting model $y=W\alpha+\varepsilon$ using ridge with cross-validation, where W contains JM/B predictors stacked
- <u>Step 2</u>: Single-variant association testing using Leave-One-Chromosome-Out (LOCO) approach

Leave-One-Out (LOO) testing approach

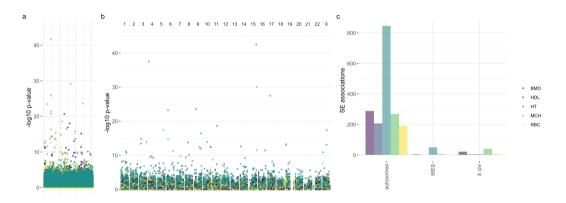
• using VAMP we obtain estimators $\hat{\beta}$ for the effect sizes in a linear model

$$y = \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma_{\boldsymbol{\epsilon}}^2 I_N).$$

• Leave-One-Out (LOO) p-values for the statistical test $H_0: \beta_i = 0$ are calculated as a p-value from t-test for testing whether the slope of a regression line is zero when regressing

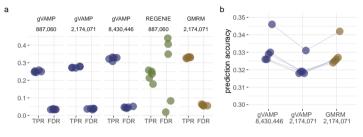
$$y^{(i)} := y - \mathbf{X}_{\backslash i} \widehat{\beta}_{\backslash i} \quad \text{ on } \quad \mathbf{X}_i$$

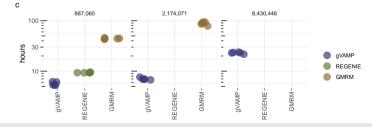
 $(\mathbf{X}_{\setminus i} = \mathsf{all columns of } \mathbf{X} \text{ except the i-th one})$

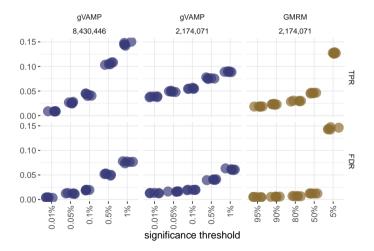

Parallelization of the code

$$\mathbf{X} = \begin{pmatrix} 0 & 4.242 & \dots & -1.414 \\ -1.414 & -1.414 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1.414 & 4.242 & \dots & 1.414 \end{pmatrix}$$

- each MPI worker sees approximately equal number of consecutive columns (X is stored in a column-major format)
- $v \mapsto \mathbf{X}^T v$ operation is brought down to the level of single markers and combined with OpenMP reduction


- $u \mapsto \mathbf{X}u = \sum_{w=1}^{W} \mathbf{X}_{w}u_{w} \rightarrow 2 \cdot (W-1) \cdot N$ doubles sent for communication
- X is being streamed-in using a lookup table (no additional memory is required, performing 4 basic operations at once):
 (0 1 0 0 1 1 1 0) →
 (NaN 2 0 1)


Autosomal imputed data + X + WES analysis



Inference of Genetic Effects via Approximate Message Passing

Association testing: gVAMP vs GMRM

