Transmission Schemes for Enhanced DoF in Cache-Aided MIMO Communication Systems

Mohammad Naseritehrani, Mohammad Javad Salehi, Antti Tölli {first name.family name}@oulu.fi

Centre for Wireless Communications University of Oulu

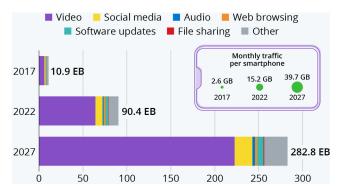
17 Apr 2024

Outline

1 Introduction

2 MIMO Coded Caching

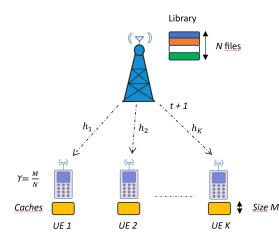
3 General Transmission Design for MIMO-CC using Covariance Matrices


C

4 Refrences

Coded Caching

- Mobile data traffic is growing continuously
 - multimedia content
 - mobile immersive viewing and extended reality.
- Wireless network infrastructure falls under considerable strain
 - demanding requirements: high throughput to ultra-low latency.


C

MC CENTRE FOR WIRELESS COMMUNICATIONS University of Oulu

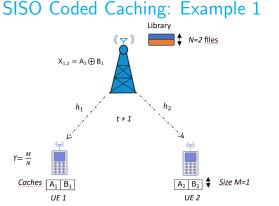
Coded Caching: SISO

Coded caching (CC) allows to use the UE memory as a new communication resource

- Offers a new performance (DoF) gain denoted by $t = K\gamma$.

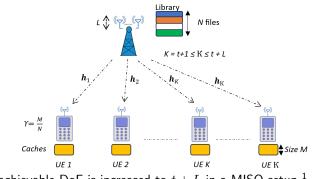
4

- Enabled by:
 - 1) Cache-placement,


2) Delivery phase

- The gain of CC is from multicasting codewords to groups of users of size $t + 1^a$,

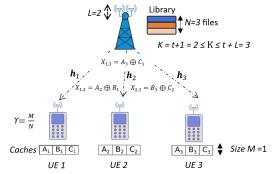
^aA. Maddah-Ali, "Fundamental limits of caching," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 285632867, 2014



BS carefully construct codewords within each Tx vector (t = 1) $\mathsf{X}_{1,2} = A_2 \oplus B_1,$

Interference-free decoding of desired signal is possible per user $y_1 = h_1(A_2 \oplus B_1) + z_1$, CC-aided Intf cancellation : $\Rightarrow \bar{y}_1 = h_1A_2 + z_1$, $y_2 = h_2(A_2 \oplus B_1) + z_2$, CC-aided Intf cancellation : $\Rightarrow \bar{y}_2 = h_2 B_1 + z_2$,

MISO Coded Caching



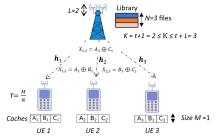
The achievable DoF is increased to t + L in a MISO setup ¹,

- The interference by user $k\ {\rm can}\ {\rm be}\ {\rm removed}\ {\rm by}\ {\rm cache\ contents}\ {\rm at\ up}\ {\rm to}\ t\ {\rm users}.$
- The spatial multiplexing gain of L at Tx-side nulls intf at other UEs
- From receiver perspective of each UE, y_k is an equivalent G-MAC.

¹. S. P. Shariatpanahi, G. Caire, and B. Hossein Khalaj," Physical-Layer Schemes for Wireless Coded Caching," IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2792â2807, 2019

MISO Coded Caching: Example 1

User	Available in Cache	Supp. by Beamformer	Useful data
1	A_{1} , B_{1} , C_{1}	$C_2 \oplus B_3$	A_2 , A_3
2	A_{2} , B_{2} , C_{2}	$A_3 \oplus C_1$	B ₁ , B ₃
3	A_{3} , B_{3} , C_{3}	$A_2 \oplus B_1$	<i>C</i> ₁ , <i>C</i> ₂


Decoding Process for ${\bf X}$ at different network UEs

²A. T Ìolli, "Multi-antenna interference management for coded caching," IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2091a2106, 2020

MISO Coded Caching: Example 1

$$\mathbf{x} = (A_2 \oplus B_1)\mathbf{w}_{1,2} + (A_3 \oplus C_1)\mathbf{w}_{1,3} + (C_2 \oplus B_3)\mathbf{w}_{2,3}$$

$$y_{1} = \underbrace{(\mathbf{h}_{1}^{H}\mathbf{w}_{1,2})\tilde{X}_{1,2}}_{1} + \underbrace{(\mathbf{h}_{1}^{H}\mathbf{w}_{1,3})\tilde{X}_{1,3}}_{1,3} + (\mathbf{h}_{1}^{H}\mathbf{w}_{2,3})\tilde{X}_{2,3} + z_{1}}_{y_{2}} = \underbrace{(\mathbf{h}_{2}^{H}\mathbf{w}_{1,2})\tilde{X}_{1,2}}_{1} + \underbrace{(\mathbf{h}_{2}^{H}\mathbf{w}_{1,3})\tilde{X}_{1,3}}_{1,3} + \underbrace{(\mathbf{h}_{2}^{H}\mathbf{w}_{2,3})\tilde{X}_{2,3}}_{2} + z_{2}}_{y_{3}} = \underbrace{(\mathbf{h}_{3}^{H}\mathbf{w}_{1,2})\tilde{X}_{1,2}}_{1,2} + \underbrace{(\mathbf{h}_{3}^{H}\mathbf{w}_{1,3})\tilde{X}_{1,3}}_{1,3} + \underbrace{(\mathbf{h}_{3}^{H}\mathbf{w}_{2,3})\tilde{X}_{2,3}}_{2,3} + z_{3}}$$

User	Available in Cache	Supp. by Beamformer	<u>Useful</u> data
1	A_1 , B_1 , C_1	$C_2 \oplus B_3$	A_2 , A_3
2	A_2 , B_2 , C_2	$A_3 \oplus C_1$	B ₁ , B ₃
3	A_{3} , B_{3} , C_{3}	$A_2 \oplus B_1$	<i>C</i> ₁ , <i>C</i> ₂

CENTRE FOR WIRELESS COMMUNICATIONS

C

Outline

- 1 Introduction
- 2 MIMO Coded Caching
- 3 General Transmission Design for MIMO-CC using Covariance Matrices

C

4 Refrences

MIMO CC: System Model

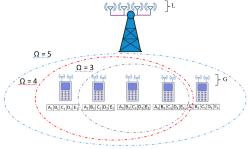


Figure: MIMO CC system model for arbitrary L and G and served users Ω

- Propose a flexible framework with enhanced DoF
 - The number of served UEs selected to optimize the achievable DoF for any given L, G, and t.
- Placement: split each file $W \in \mathcal{F}$ into $\binom{K}{t}$ subfiles $W_{\mathcal{P}}$, where $\mathcal{P} \subseteq [K]$, $|\mathcal{P}| = t$.
- Delivery: The server constructs and transmits the demand set via $\mathbf{x}(n) \in \mathbb{C}^L$,

$$\mathbf{y}_k(n) = \mathbf{H}_k \mathbf{x}(n) + \mathbf{z}_k(n)$$

- $\mathcal{K}(n) \subseteq [K]$ with $\Omega \in \{t+1, \ldots, t+L\}$ members $(|\mathcal{K}(n)| = \Omega)$, and $n \in [\binom{K}{\Omega}]$,

WC CENTRE FOR WIRELESS COMMUNICATIONS University of Outu **N**.

UNIVERSITY OF OULU

Achievable DoF Analysis I

Theorem 1: Achievable Bound for the number of streams linealry decodable

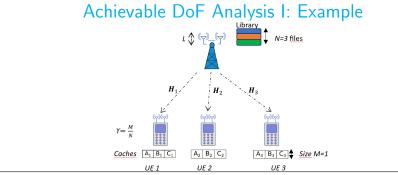
Consider a MIMO-CC system with K users, CC gain t, L Tx-antennas, and G Rx-antennas. A subset K of users with size $\Omega \leq K$, where $t + 1 \leq \Omega \leq t + L$ are served in each interval.

$$\beta \le \min\left(G, \left(L - (\Omega - t - 1)\beta\right)\binom{\Omega - 1}{t}\right),\tag{1}$$

Every user in \mathcal{K} is able to decode β parallel streams interference-free.

Interference caused by every stream sent to user k can be removed:

- By cache content at up to t UEs
- Suppressed by Tx-side precoding for the rest of $\Omega t 1$ target users;


 \Rightarrow The remaining spatial DoF : $L - (\Omega - t - 1)\beta$.

• Maximum value of β directly depends on sufficient L;

- To keep the direction of subpackets intended to the same null-space orthogonal
- Otherwise; to keep the null-space of intended packets linearly

CWC CENTRE FOR WIRELESS COMMUNICATION: University of Oulu

If $G = \beta = 2$, $\Omega = 3$, t = 1, then:

 $\mathbf{x} = (A_2 \oplus B_1)\mathbf{w}_{1,2} + (A_3 \oplus C_1)\mathbf{w}_{1,3} + (C_2 \oplus B_3)\mathbf{w}_{2,3}$ $y_{1,1} = \mathbf{u}_{1,1}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{1,2}(\underline{A_2 \oplus B_1}) + \mathbf{u}_{1,1}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{1,3}(\underline{A_3 \oplus C_1}) + \mathbf{u}_{1,1}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{2,3}(C_2 \oplus B_3) + z_{1,1},$ $y_{1,2} = \mathbf{u}_{1,2}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{1,2}(\underline{A_2 \oplus B_1}) + \mathbf{u}_{1,2}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{1,3}(\underline{A_3 \oplus C_1}) + \mathbf{u}_{1,2}^{\mathrm{H}}\mathbf{H}_1\mathbf{w}_{2,3}(C_2 \oplus B_3) + z_{1,2},$

Subpackets delivered using linearly independent multicast beamformers, $\Rightarrow \mathbf{w}_{1,2} \in \mathrm{Null}(\mathbf{U}_3^{\mathrm{H}}\mathbf{H}_3), \text{ and } \mathbf{w}_{1,3} \in \mathrm{Null}(\mathbf{U}_2^{\mathrm{H}}\mathbf{H}_2);$ $\min_L(2 \times (L-2)) \rightarrow L = 3 \text{ is sufficient, and Thus, } \beta = 2 \times (3-2) = 2.$

13

Achievable DoF Analysis II

Corollary 1: Achievable DoF

The DoF of $\beta\Omega$ is necessarily achievable in every given MIMO setup, as long as β and Ω satisfy the given condition in Theorem 1. Using Theorem 1, the maximum achievable DoF for the proposed MIMO-CC transmission design is given by solving

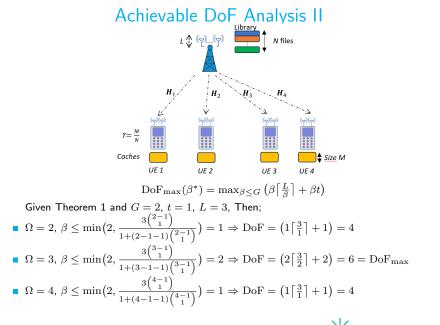
$$DoF_{\max}(\beta^*, \Omega^*) = \max_{\beta, \Omega} \ \Omega\beta,$$

s.t. $\beta \le \min\left(G, \frac{L\binom{\Omega-1}{t}}{1+(\Omega-t-1)\binom{\Omega-1}{t}}\right),$ (2)

where β^* and Ω^* represent the optimal parameters chosen to achieve $\mathrm{DoF}_{\mathrm{max}}$.

Corollary 2: Simplified Achievable DoF

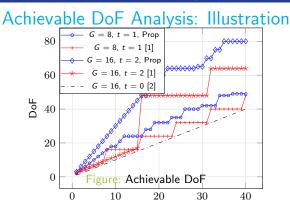
One can obtain the upperbound for Ω w.r.t β in MIMO setup from Theorem I, and search across one dimension.


$$DoF_{\max}(\beta^*) = \max_{\beta \le G} \left(\beta \left\lceil \frac{L}{\beta} \right\rceil + \beta t\right)$$
(3)

where the bound for $\boldsymbol{\Omega}$ is:

$$\Omega \le \left\lceil \frac{L}{\beta} \right\rceil + t$$

CWC CENTRE FOR WIRELESS COMMUNICATIONS


(4)

CWC CENTRE FOR WIRELESS COMMUNICATIONS

NIVERSITY OF OULU

C

- The proposed scheme relaxes the integer constraint on $\frac{L}{G}$
- Gain boost of MIMO-CC setups: with smaller TX-side SM gains than [3]³.
- This flexibility becomes evident when enhancing the RX SM per UE
- Proposed DoF consistently achieves higher levels v.s MIMO scheme (t = 0)

³E. Parrinello, "Fundamental Limits of Coded Caching with Multiple Antennas, Shared Caches and Uncoded Prefetching," IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2252â2268, 2020.

Outline

- 1 Introduction
- 2 MIMO Coded Caching
- 3 General Transmission Design for MIMO-CC using Covariance Matrices

4 Refrences

General Transmission Design for MIMO-CC using Covariance Matrices

Consider a generic multicast transmission signal vector $\mathbf{x}(i)$, built as

$$\mathbf{x}(i) = \sum_{\mathcal{T} \subseteq \mathcal{K}(i), |\mathcal{T}| = t+1} \tilde{\mathbf{x}}_{\mathcal{T}}(i), \forall i , \qquad (5)$$

- $\tilde{\mathbf{x}}_{\mathcal{T}}(i)$ is the corresponding multicast signal at time instant *i*, chosen from a complex Gaussian codebook $\tilde{\mathbf{x}}_{\mathcal{T}} \sim \mathcal{CN}(\mathbf{0}, \mathbf{K}_{\tilde{\mathbf{x}}_{\mathcal{T}}})$.

-
$$\mathbf{x} = \sum_{\mathcal{T} \subseteq \mathcal{K}, |\mathcal{T}| = t+1} \tilde{\mathbf{x}}_{\mathcal{T}}$$
, and $\mathbf{K}_{\mathbf{x}} = \sum_{\mathcal{T} \subseteq \mathcal{K}, |\mathcal{T}| = t+1} \mathbf{K}_{\tilde{\mathbf{x}}_{\mathcal{T}}}$.

- This allows us to rewrite (10) as follows:

$$\mathbf{y}_{k} = \mathbf{H}_{k} \sum_{\mathcal{T} \in \mathcal{S}_{k}^{\mathcal{K}}} \tilde{\mathbf{x}}_{\mathcal{T}} + \mathbf{H}_{k} \sum_{\mathcal{T} \in \bar{\mathcal{S}}_{k}^{\mathcal{K}}} \tilde{\mathbf{x}}_{\mathcal{T}} + \mathbf{z}_{k} , \qquad (6)$$

General Transmission Design for MIMO-CC using Covariance Matrices: Example

Given L = 4, $\Omega = 3$ users, t = 1 (i.e., DoF = 6), and files A-C requested by users 1-3, respectively. The MC transmission vector is

$$\mathbf{x} = \mathbf{x}_{1,2} + \mathbf{x}_{1,3} + \mathbf{x}_{2,3},\tag{7}$$

Each signal is proportional $\mathbf{x}_{1,2} \propto (A_2 \oplus B_1)$, $\mathbf{x}_{1,3} \propto (A_3 \oplus C_1)$, $\mathbf{x}_{2,3} \propto (B_3 \oplus C_2)$.⁴

Then, the received signals at users 1-3:

$$\begin{split} \mathbf{y}_1 &= \frac{\mathbf{H}_1 \mathbf{x}_{1,2}}{\mathbf{H}_2 \mathbf{x}_{1,2}} + \frac{\mathbf{H}_1 \mathbf{x}_{1,3}}{\mathbf{H}_2 \mathbf{x}_{2,3}} + \mathbf{H}_1 \mathbf{x}_{2,3} + \mathbf{z}_1 \;, \\ \mathbf{y}_2 &= \frac{\mathbf{H}_2 \mathbf{x}_{1,2}}{\mathbf{H}_2 \mathbf{x}_{1,3}} + \frac{\mathbf{H}_2 \mathbf{x}_{2,3}}{\mathbf{H}_3 \mathbf{x}_{2,3}} + \mathbf{H}_2 \mathbf{x}_{1,3} + \mathbf{z}_2 \;, \\ \mathbf{y}_3 &= \frac{\mathbf{H}_3 \mathbf{x}_{1,3}}{\mathbf{H}_3 \mathbf{x}_{2,3}} + \frac{\mathbf{H}_3 \mathbf{x}_{2,3}}{\mathbf{H}_3 \mathbf{x}_{1,2}} + \mathbf{z}_3 \;, \end{split}$$

■ UE 1, both $\mathbf{x}_{1,2}$ and $\mathbf{x}_{1,3}$: desired signals, and $\mathbf{x}_{2,3}$: Gaussian interference \Rightarrow y₁: an equivalent G-MAC channel, equal rate decoding of its msgs $R_{MAC}^1 = \min\left(R_{\{1,2\}}, R_{\{1,3\}}, \frac{1}{2}R_{\{\{1,2\},\{1,3\}\}}\right),$ (8)

⁴As a special case, in (7), the transmission vector $\mathbf{x} = (A_2 \oplus B_1)\mathbf{w}_{1,2} + (A_3 \oplus C_1)\mathbf{w}_{1,3} + (B_3 \oplus C_2)\mathbf{w}_{2,3}$ [4].

MULTIGROUP MULTICAST TRANSMISSION

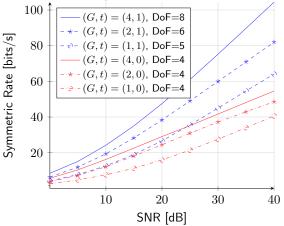
Symmetric rate

Assuming that all requests for files are served \Rightarrow The worst-case delivery rate. $K = \frac{K(K)(K-t-1)}{K}$

$$R_{sym} = \frac{K}{\sum_{n} T_{n}} = \frac{K\left(\frac{1}{t}\right)\left(\frac{1}{\Omega-t-1}\right)}{\sum_{n} \frac{1}{R_{\text{max-min}}(n)}},$$
(9)

The goal: Design transmission parameters, R_{sym} is maximized in the delivery scheme.

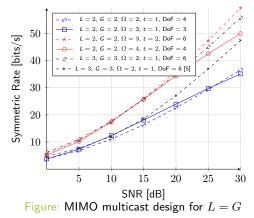
Max-Min Rate Optimization Problem


$$\begin{split} R_{\max-\min}(n) &= \\ \underset{\mathbf{K}_{\mathbf{x}_{\mathcal{T}}}, R_{\mathcal{T}}, \mathcal{T} \in \mathsf{B}}{\max} \min_{k \in \mathcal{K}} \min_{\mathsf{B} \subseteq \mathsf{S}_{k}^{\mathcal{K}}} \left[\frac{1}{|\mathsf{B}|} \sum_{\mathcal{T} \in \mathsf{B}} R_{\mathcal{T}} \right] \\ s.t. \quad \sum_{\mathcal{T} \in \mathsf{B}} R_{\mathcal{T}} \leq \log |\mathbf{I} + \mathbf{H}_{k} \sum_{\mathcal{T} \in \mathsf{B}} \mathbf{K}_{\mathbf{x}_{\mathcal{T}}} \mathbf{H}_{k}^{H} \mathbf{Q}_{k}^{-1}|, \ \forall k \in \mathcal{K}, \mathsf{B} \subseteq \mathsf{S}_{k}^{\mathcal{K}} \\ \sum_{\mathcal{T} \in \mathsf{S}^{\mathcal{K}}} \mathrm{Tr}(\mathbf{K}_{\mathbf{x}_{\mathcal{T}}}) \leq P_{T}, \quad \text{where} \quad \mathbf{Q}_{k} = (N_{0}\mathbf{I} + \mathbf{H}_{k} \sum_{\mathcal{T} \in \mathsf{S}_{k}^{\mathcal{K}}} \mathbf{K}_{\mathbf{x}_{\mathcal{T}}} \mathbf{H}_{k}^{H}) \end{split}$$

CWC CENTRE FOR WIRELESS COMMUNICATIONS

VIVERSIT

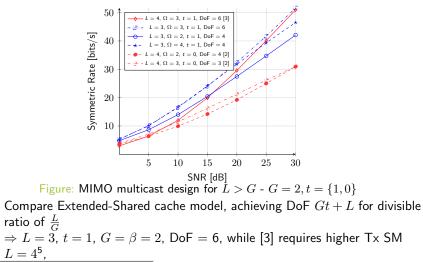
20



- Covariance of the transmission signal, aiming for improved performance while achieving the enhanced DoF in Theorem 1.
- DoF scales with t. and G. when L = 4 for all setups.

CENTRE FOR WIRELESS COMMUNICATIONS University of Oulu

General Transmission Design for MIMO-CC Cov Matrices: Simulation


 Cov-based design achieves the enhanced DoF, if params selected based on Theorem 1.

Proposed approach achieves a DoF boost even with smaller Tx-spatial SM.

C

CWC CENTRE FOR WIRELESS COMMUNICATIONS

General Transmission Design for MIMO-CC Cov Matrices: Simulation

⁵E. Parrinello, "Fundamental Limits of Coded Caching with Multiple Antennas, Shared Caches and Uncoded Prefetching," IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2252â2268, 2020.

Conclusion and Future Work

We proposed a flexible CC scheme for MIMO setups

- Optimizing the number of users served in each transmission to maximize the achievable DoF.

Proposed a high-performance beamformer design for MIMO-CC setups

- Formulating the problem of maximizing the symmetric rate w.r.t transmit covariance matrices for the multicast signals.
- Solved the non-convex problem using SCA and verified the performance enhancement through simulations.
- Optimality Proof of the proposed bound; (Converse Theorem)
- Generalized form of the proposed DoF with different SM per UE G_k ;

Outline

- 1 Introduction
- 2 MIMO Coded Caching

3 General Transmission Design for MIMO-CC using Covariance Matrices

4 Refrences

24

Refrences

- M. J. Salehi, E. Parrinello, S. P. Shariatpanahi, P. Elia, and A. Tolli, "Low-Complexity High-Performance Cyclic Caching for Large MISO Systems," vol. 21, no. 5, pp. 3263–3278, 2022.
- [2] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO wireless communications. Cambridge university press, 2007.
- [3] M. J. Salehi, H. B. Mahmoodi, and A. Tölli, "A Low-Subpacketization High-Performance MIMO Coded Caching Scheme," 2021, pp. 427–432.
- [4] A. Tolli, S. P. Shariatpanahi, J. Kaleva, and B. Khalaj, "Multicast Beamformer Design for Coded Caching," vol. 2018-June, 6, pp. 1914–1918.
- [5] M. Salehi, M. NaseriTehrani, and A. Tölli, "Multicast beamformer design for mimo coded caching systems," in 2023-2023 IEEE ICASSP. IEEE, 2023, pp. 1–5.

