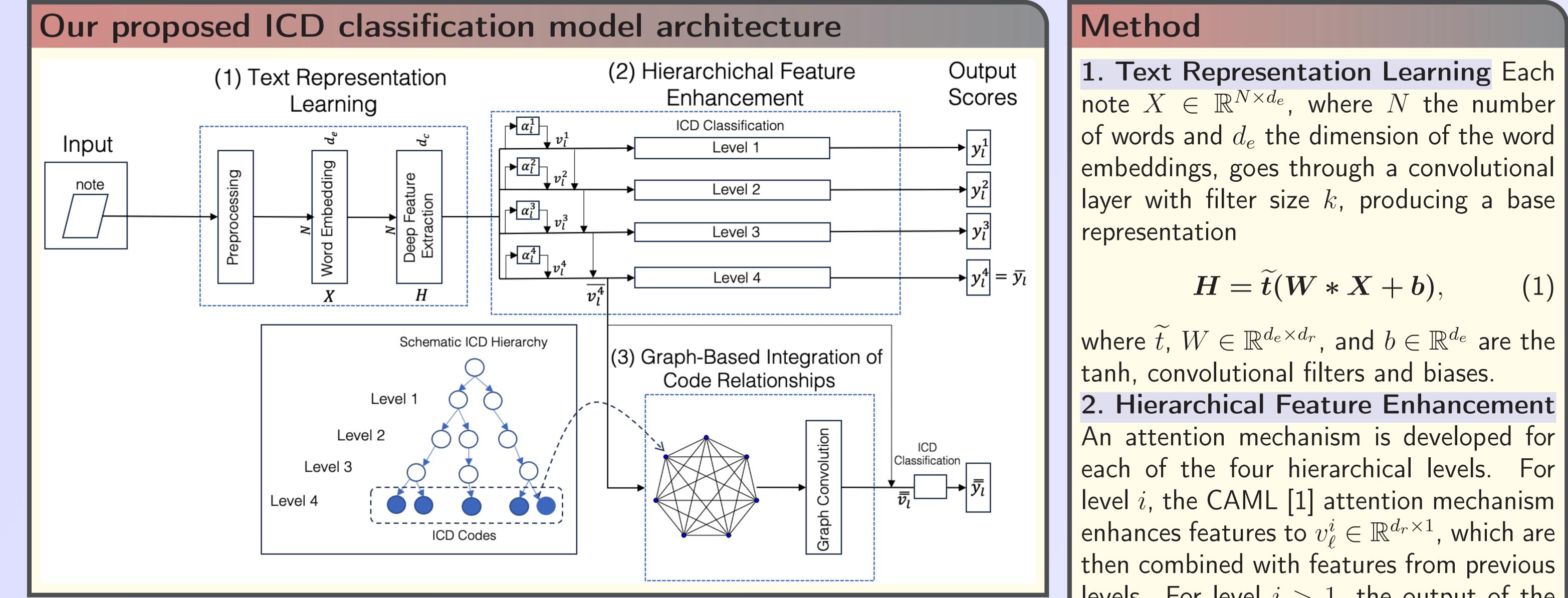
CO-OCCURRENCE GRAPH-ENHANCED HIERARCHICAL PREDICTION OF ICD CODES

Soha S. Mahdi¹, Eirini Papagiannopoulou¹, Nikos Deligiannis^{1,2}, Hichem Sahli^{1,2} ¹ETRO Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium ²*imec, Leuven, Belgium*

Introduction

This study presents a modular approach, sequentially combining graph-based integration of ICD code co-occurrence with a hard-coded hierarchical enriched text representation drawn from the ICD ontology.



Results

Mean±standard deviation derived from five different runs on the MIMIC-III dataset, compared based on f1-micro, f1-macro, and precision@8 metrics. Baseline, models with varied levels of hierarchical enhancement (HE), models with hierarchical enhancement and graphbased enhancement (HE + GBE), and a model with graph-based enhancement only are tested.

$$H = \tilde{t}(W * X + b), \qquad (1)$$

where \tilde{t} , $W \in \mathbb{R}^{d_e \times d_r}$, and $b \in \mathbb{R}^{d_e}$ are the tanh, convolutional filters and biases. 2. Hierarchical Feature Enhancement An attention mechanism is developed for each of the four hierarchical levels. For level *i*, the CAML [1] attention mechanism enhances features to $v_{\ell}^{i} \in \mathbb{R}^{d_{r} \times 1}$, which are then combined with features from previous levels. For level i > 1, the output of the hierarchical module with *i* levels is:

$$\bar{v}_l^i \leftarrow (v_\ell^j ||_{j=1}^i). \tag{2}$$

3. Graph-based Integration of Code **Relationships** The graph convolution function q takes the text representation H^0

Model	Model Details	f1-micro	f1-macro	prec@8
Baseline	Model1: CAML[4]	$0.5105 \pm 5e-4$	$0.0703 \pm 8e-4$	$0.6396 \pm 7e-4$
Models with HE	Model2: 2 level HE	$0.5177 \pm 12e-4$	$0.0721 \pm 26e-4$	$0.6524 \pm 10e-4$
	Model3: 3 level HE	$0.5221 \pm 13e-4$	$0.0728 \pm 17e-4$	$0.6557 \pm 1e-4$
	Model4: 4 level HE	$0.5195 \pm 11e-4$	$0.0728 \pm 29e-4$	$0.6526 \pm 14e-4$
Models with HE and GBE	Model5: Model 4 + GBE	$0.5237 \pm 8e-4$	$0.07349 \pm 9e-4$	$0.6568 \pm 13e-4$
	Model6: Model 3 + GBE	$0.5195 \pm 16e-4$	$0.0748\pm5\mathrm{e} extrm{-4}$	$0.6519 \pm 20e-4$
Models with GBE	Model7: Model 1 + GBE	$0.5129 \pm 3e-4$	$0.0692 \pm 17e-4$	$0.6401 \pm 19e-4$

Model1: CAML baseline (utilizing per-label attention for feature extraction). **Model2** through **Model4** integrate the hierarchical feature enhancement module, each successively integrating an additional hierarchical level compared to the Model1. Model4 encompasses the entirety of the hierarchical levels. Model5 integrates the graph-based code relationship module following the hierarchical enhancements introduced in Model4. Building upon the insight that Model3 outperformed Model4, we combine Model3 with the graph-based module to create **Model6**. Our analysis is completed by including **Model7**, which attaches the graph-based module directly after the baseline Model1.

Conclusion

• Our study demonstrated enhanced performance using sequentially combined modules for text feature extraction and ICD coding, outperforming CAML;

as input and outputs:

$$H^1 = g(H^0) = \sigma(AH^0W^0),$$
 (3)

where $H^0 = \bar{v}_l^4$ is the input feature representation, σ is the LeakyReLU activation, $A \in \mathbb{R}^{l \times l}$ contains edge frequency weights in the graph with l nodes (classes), and $W^0 \in \mathbb{R}^{d_r \times d_r}$ are the learnable weights. The enhanced representation for code ℓ is:

$$\bar{\bar{v}}_{\ell} \leftarrow (\bar{v}_{\ell}{}^4 || H^1). \tag{4}$$

Classification and Loss Function The classification for each hierarchical level is: $y^i_\ell = \sigma(\beta^i_\ell \bar{v_\ell}^i + b^i_\ell)$, where $\bar{v_\ell}^i$ is the document representation vector for label ℓ in level *i*. The prediction weights $\beta_{\ell}^{i} \in \mathbb{R}^{d_{r} \times i}$ and the scalar offset b_{ℓ}^i are learned parameters specific to each label ℓ in level *i*. For

- Its modular design allows seamless integration into existing models;
- Further research could extend this approach to larger datasets and explore ICD-10 or ICD-11 applicability.

Acknowledgements

This work was partially funded by INNOVIRIS (Brussels Capital Region, Belgium) under the project: "REFINED".

References

J. Mullenbach et al., "Explainable Prediction of Medical Codes from Clinical Text," in Proceedings of NAACL 2018: H L T, Vol. 1. ACL, 2018, pp. 1101–1111.

the last classifier, $\bar{\bar{y}}_{\ell} = \sigma(\bar{\beta}_{\ell}^{\top}\bar{\bar{v}}_{\ell} + \bar{b}_{\ell})$, where $\bar{\beta}_{\ell} \in \mathbb{R}^{d_r \times 5}$. For the multi-label classification task of hierarchical levels y_{I}^{i} and the graph-based module output $\bar{\bar{y}}_l$, the binary cross-entropy with logits loss function is used. The final loss function comprises two terms:

$$\ell = \sum_{i=1}^{4} 10^{i-3} \ell_{BCE}(y_{\ell}^{i}, t_{\ell}^{i}) + \ell_{BCE}(\bar{y}_{\ell}, \bar{t}_{\ell}),$$

where
$$\ell_{BCE}(y_{\ell}, t_{\ell}) = -t_{\ell} \log(y_{\ell}) - (1 - t_{\ell}) \log(1 - y_{\ell}).$$