Discriminative Training of VBx Diarization

Dominik Klement, Mireia Diez, Federico Landini, Lukáš Burget, Anna Silnova Marc Delcroix, Naohiro Tawara

Diarization

- Methods:
 - Clustering-based
 - End-to-end Neural Diarization (EEND)
 - Hybrid (combination of the previous ones)
- Currently dominated by EEND
- EEND Problems:
 - Trained on huge amount of simulated data
 - May not even model speaker information implicitly
 - Problems with determining the correct # of speakers

Why Clustering-based VBx?

- Built on top of a pre-trained SID embedding extractor (ResNet)
- Implicit speaker-discriminative power in the embeddings
- Surpasses EEND models in estimating # of speakers
- Ability to use large **real** SID datasets to train the pipeline (real diarization data are scarce)
- Relevant baseline used in many research works till this date
- Still competitive on 16 kHz data

VBx Overview

1. Per-segment Embeddings

VBx Overview

VBx Overview

VBx - Basics

- Bayesian HMM-based model $p(z_t = s | z_{t-1} = s') = (1 P_l)\pi_s + \delta(s = s')P_l$
- Two-covariance PLDA speaker models (HMM emissions):

$$p(\hat{\mathbf{x}}_i) = \mathcal{N}(\hat{\mathbf{x}}_i; \hat{\mathbf{m}}_s, \mathbf{\Sigma}_{\mathbf{w}}); p(\hat{\mathbf{m}}_s) = \mathcal{N}(\hat{\mathbf{m}}_s; \mathbf{m}, \mathbf{\Sigma}_{\mathbf{b}})$$

Transformed input x-vectors (std. normal within-class, diagonal across-class)

$$\mathbf{\hat{x}} = (\hat{\mathbf{X}} - \mathbb{1}\mathbf{m})\mathbf{E}_{\mathbf{b}}\mathbf{\Sigma}_{\mathbf{b}}\mathbf{E} = \mathbf{\Sigma}_{\mathbf{w}}\mathbf{E}\mathbf{\Phi}$$

• Standard normal prior on speaker variable

$$p(\mathbf{m}_s) = \mathcal{N}(\mathbf{m}_s; \mathbf{0}, \mathbf{\Phi})$$
$$p(\mathbf{x}_t | z_t = s) = \mathcal{N}(\mathbf{x}_t; \mathbf{V}\mathbf{y}_s, \mathbf{I})$$
$$\mathbf{V} = \mathbf{\Phi}^{\frac{1}{2}}, \mathbf{m}_s = \mathbf{V}\mathbf{y}_s, p(\mathbf{y}_s) = \mathcal{N}(\mathbf{y}_s; \mathbf{0}, \mathbf{I})$$

VBx - Inference

$$p(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) = p(\mathbf{X} | \mathbf{Z}, \mathbf{Y}) p(\mathbf{Z}) p(\mathbf{Y}) = \prod_{t} p(\mathbf{x}_{t} | z_{t}) \prod_{t} p(z_{t} | z_{t-1}) \prod_{s} p(\mathbf{y}_{s})$$

- Intractable posterior: $p(\mathbf{Z}|\mathbf{X}) = \int p(\mathbf{Z}, \mathbf{Y}|\mathbf{X}) d\mathbf{Y}$
- Let's approximate: $p(\mathbf{Z}, \mathbf{Y} | \mathbf{X}) \approx q(\mathbf{Z}, \mathbf{Y}) = q(\mathbf{Z})q(\mathbf{Y})$ By maximizing:

$$\hat{\mathcal{L}}\left(q(\mathbf{Y}, \mathbf{Z})\right) = \mathbf{F}_{A} E_{q(\mathbf{Y}, \mathbf{Z})} \left[\ln p(\mathbf{X} | \mathbf{Y}, \mathbf{Z})\right] + \mathbf{F}_{B} E_{q(\mathbf{Y})} \left[\ln \frac{p(\mathbf{Y})}{q(\mathbf{Y})}\right] + E_{q(\mathbf{Z})} \left[\ln \frac{p(\mathbf{Z})}{q(\mathbf{Z})}\right]$$

- We maximize $q(\mathbf{Y})$ given $q(\mathbf{Z})$ fixed and vice-versa iteratively
- F_A counteracts the independence assumption of HMM
- The higher the F_B , the more speakers are dropped

Gridsearch

- Hyperparameters need to be optimized jointly
- Gridsearch requires manual specification of search space
 - Fa=0.2, Fb=6 DIHARD II
 - **Fa=0.4, Fb=64** AMI
- Precision of found parameters is limited
- Prior knowledge is **necessary** to find optimal parameters

Automatic Search

- Advantages:
 - User can treat VBx as a **blackbox** and optimize the hyperparameters for a new dataset
 - **Joint optimization** of the VBx pipeline (including ResNet)
- Procedure:
 - Hyperparameters are optimized while the rest of the pipeline is fixed
 - PLDA is fine tuned with fixed hyperparameters to potentially further boost the model performance

Training & Evaluation Setup

- We used Adam optimizer with different learning rates for Fa, Fb and loop probability
- Datasets:
 - CALLHOME
 - DIHARD II
 - o AMI
- Metrics: Diarization Error Rate (DER)
- Selected the best-performing model based on the lowest validation DER

BCE loss

- $\boldsymbol{\gamma}_t^{\phi} = (\gamma_{t1}^{\phi}, \gamma_{t2}^{\phi}, \dots, \gamma_{tS}^{\phi})^{\top} \in \langle 0, 1 \rangle^S$ denotes VBx predictions
- $\hat{\mathbf{l}}_t = (\hat{l}_{t1}, \hat{l}_{t2}, \dots, \hat{l}_{tS})^\top \in \{0, 1\}^S$ denotes ground truth labels

$$\mathcal{L} = \frac{1}{TS} \min_{\phi \in perm(S)} \sum_{t=1}^{T} H(\boldsymbol{\gamma}_{t}^{\phi}, \hat{\mathbf{l}}_{t}) \qquad H_{B}(\boldsymbol{\gamma}_{t}^{\phi}, \hat{\mathbf{l}}_{t}) = \sum_{s=1}^{S} -\underline{\hat{l}_{ts}log(\boldsymbol{\gamma}_{ts}^{\phi})} - \underline{(1 - \hat{l}_{ts})log(1 - \boldsymbol{\gamma}_{ts}^{\phi})}$$

Overconfidence & BCE

- VBx produces overconfident posteriors
- BCE is trying to fix overconfident error during later stages of training
- We tried BCE+calib: $H_{B+C} = H_B(softmax(\tau \cdot \gamma_{ts}^{\phi}), \hat{\mathbf{l}}_t)$ with trainable or fixed scaling constant

EDE loss

- BCE does not correlate with DER well as it tries to fix over-confidence errors instead of diarization-related errors
- We propose Expected Detection Error (EDE) loss:

$$H_E(\boldsymbol{\gamma}_t^{\phi}, \hat{\mathbf{l}}_t) = \sum_{s=1}^{S} \underbrace{(1 - \gamma_{ts}^{\phi})\hat{l}_{ts}}_{\text{Expected}} + \underbrace{\gamma_{ts}^{\phi}(1 - \hat{l}_{ts})}_{\text{Expected}}$$

EDE loss

- BCE does not correlate with DER well as it tries to fix over-confidence errors instead of diarization-related errors
- We propose Expected Detection Error (EDE) loss:

$$H_E(\boldsymbol{\gamma}_t^{\phi}, \hat{\mathbf{l}}_t) = \sum_{s=1}^S (1 - \gamma_{ts}^{\phi}) \hat{l}_{ts} + \gamma_{ts}^{\phi} (1 - \hat{l}_{ts})$$

VBx - HMM to GMM

- Another important hyperparameter: loop probability
- Preliminary experiments showed the automatic search pushed it to 0
- Effectively degrades HMM to GMM

$$p(z_t = s | z_{t-1} = s') = (1 - P_l)\pi_s + \delta(s = s')P_l \stackrel{P_l = 0}{=} \pi_s$$

• Almost **no effect** on the performance

Optimization Results

- HMM VBx baseline (GS)
- GMM VBx baseline (GS)
- DVBx hyper parameters trained

• DVBx matches the baseline performance, which is the best we can do

Data	System	au	F_A	F_B	DER
	HMM VBx [2] GMM VBx	7.00 7.00	0.20 0.20	6.00 5.00	18.55 18.93
DH	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	2.90 12.88 9.62	0.25 0.43 0.33	4.38 10.14 9.64	18.98 18.84 <u>18.76</u>
СН	HMM VBx [2] GMM VBx	7.00 7.00	0.40 0.30	17.00 13.00	13.53 13.63
	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	0.97 1.93 12.40	0.08 0.51 0.26	1.39 11.16 9.47	13.53 14.52 13.48
	HMM VBx [2] GMM VBx	7.00 7.00	0.40 0.50	64.00 63.00	20.84 21.49
AMI	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	12.35 15.10 3.48	0.12 0.21 0.25	8.89 13.90 25.31	21.06 21.72 <u>20.91</u>

Optimization Results

- HMM VBx baseline (GS)
- GMM VBx baseline (GS)
- DVBx hyper parameters trained

• DVBx matches the baseline performance, which is the best we can do

Data	System	au	F_A	F_B	DER
DH	HMM VBx [2] GMM VBx	7.00 7.00	0.20 0.20	6.00 5.00	18.55 18.93
	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	2.90 12.88 9.62	0.25 0.43 0.33	4.38 10.14 9.64	18.98 18.84 <u>18.76</u>
СН	HMM VBx [2] GMM VBx	7.00 7.00	0.40 0.30	17.00 13.00	13.53 13.63
	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	0.97 1.93 12.40	0.08 0.51 0.26	1.39 11.16 9.47	13.53 14.52 <u>13.48</u>
AMI	HMM VBx [2] GMM VBx	7.00 7.00	0.40 0.50	64.00 63.00	20.84 21.49
	DVBx - BCE DVBx - BCE+calib. DVBx - EDE	12.35 15.10 3.48	0.12 0.21 0.25	8.89 13.90 25.31	21.06 21.72 <u>20.91</u>

Optimization Results

- HMM VBx baseline (GS)
- GMM VBx baseline (GS)
- DVBx hyper parameters trained

• DVBx matches the baseline performance, which is the best we can do

Data	System	au	F_A	F_B	DER
DH	HMM VBx [2]	7.00	0.20	6.00	18.55
	GMM VBx	7.00	0.20	5.00	18.93
	DVBx - BCE	2.90	0.25	4.38	18.98
	DVBx - BCE+calib.	12.88	0.43	10.14	18.84
	DVBx - EDE	9.62	0.33	9.64	<u>18.76</u>
СН	HMM VBx [2]	7.00	0.40	17.00	13.53
	GMM VBx	7.00	0.30	13.00	13.63
	DVBx - BCE	0.97	0.08	1.39	13.53
	DVBx - BCE+calib.	1.93	0.51	11.16	14.52
	DVBx - EDE	12.40	0.26	9.47	<u>13.48</u>
AMI	HMM VBx [2]	7.00	0.40	64.00	20.84
	GMM VBx	7.00	0.50	63.00	21.49
	DVBx - BCE	12.35	0.12	8.89	21.06
	DVBx - BCE+calib.	15.10	0.21	13.90	21.72
	DVBx - EDE	3.48	0.25	25.31	20.91

PLDA Fine Tuning Results

 PLDA FT further improves the model performance (substantially on AMI suggesting more data is needed)

System	DH	СН	AMI
a) GMM VBx b) DVBx trained F_A, F_B c) b) + PLDA FT	18.93 18.76 18.66	13.63 13.48 13.38	21.49 20.91 18.99
d) a) + PLDA FT	18.93	13.63	18.88

Conclusion

- Proposed a new technique for automatic hyperparameter finding without the requirement of prior knowledge
- Proposed a new loss that better correlates with DER metric
- Showed that we can further improve VBx performance by discriminative
 PLDA fine tuning
- Available on GitHub:
 - <u>https://github.com/BUTSpeechFIT/DVBx</u>

VBx - Speaker Models

•
$$q^*(\mathbf{Y}) = \prod_s q^*(\mathbf{y}_s) = \mathcal{N}\left(\mathbf{y}_s | \boldsymbol{\alpha}_s, \mathbf{L}_s^{-1}\right)$$

 $\boldsymbol{\alpha}_s = \frac{F_A}{F_B} \mathbf{L}_s^{-1} \sum_t \gamma_{ts} \mathbf{V}^\top \mathbf{x}_t, \quad \mathbf{L}_s = \mathbf{I} + \frac{F_A}{F_B} \left(\sum_t \gamma_{ts}\right) \mathbf{\Phi}$

- The higher the F_B , the closer spk. models are to the standard normal prior
- The opposite holds for F_A

VBx - Basics

- Bayesian HMM-based model $p(z_t = s | z_{t-1} = s') = (1 P_l)\pi_s + \delta(s = s')P_l$
- PLDA speaker models (HMM emissions):
 - Transformed input x-vectors (std. normal within-class, diagonal across-class)
 - Standard normal prior on speaker means

VBx - Basics

- Bayesian HMM-based model $p(z_t = s | z_{t-1} = s') = (1 P_l)\pi_s + \delta(s = s')P_l$
- PLDA speaker models (HMM emissions):
 - Transformed input x-vectors (std. normal within-class, diagonal across-class)
 - Standard normal prior on speaker means

$$\begin{aligned} \mathbf{X} &= (\hat{\mathbf{X}} - \mathbb{1}\mathbf{m})\mathbf{E} \quad \boldsymbol{\Sigma}_{\mathbf{b}}\mathbf{E} = \boldsymbol{\Sigma}_{\mathbf{w}}\mathbf{E}\boldsymbol{\Phi} \\ p(\mathbf{x}_t | z_t = s) &= \mathcal{N}(\mathbf{x}_t; \mathbf{V}\mathbf{y}_s, \mathbf{I}) \\ \mathbf{V} &= \boldsymbol{\Phi}^{\frac{1}{2}}, \mathbf{m}_s = \mathbf{V}\mathbf{y}_s, p(\mathbf{y}_s) = \mathcal{N}(\mathbf{y}_s; \mathbf{0}, \mathbf{I}) \end{aligned}$$

VBx - Hyper Parameters

- We only need $\gamma_{ts} = q(z_t = s) = \frac{A(t,s)B(t,s)}{\overline{p}(\mathbf{X})}$ instead of $q(\mathbf{Z})$, where $\ln \overline{p}(\mathbf{x}_t|s) = F_A[\dots]$
- I.e. F_A also scales the distribution of the embeddings

• We also trained loop probability but it was being pushed to 0 by the training itself, thus we opted for GMM instead of HMM

 $p(z_t = s | z_{t-1} = s') = (1 - P_l)\pi_s + \delta(s = s')P_l \stackrel{P_l = 0}{=} \pi_s$

VBx - PLDA Fine Tuning Results

• Recall, we re-parametrized the PLDA model:

$$\circ \qquad \mathbf{X} = (\hat{\mathbf{X}} - \mathbb{1}\mathbf{m})\mathbf{E}\mathsf{d}\boldsymbol{\Sigma}_{\mathbf{b}}\mathbf{E} = \boldsymbol{\Sigma}_{\mathbf{w}}\mathbf{E}\boldsymbol{\Phi}$$

• We train the transformation matrix ${\bf E}$ and between-class covariance matrix in the transformed space Φ