Channel Estimation in Underdetermined Systems Utilizing Variational Autoencoders

Michael Baur, Nurettin Turan, Benedikt Fesl, Wolfgang Utschick

Technical University of Munich TUM School of Computation, Information and Technology Chair of Signal Processing

Learning the Underlying Distribution

- \Rightarrow Knowledge of the ambient channel distribution is a strong prior
- ⇒ But: Underlying distribution is generally high-dimensional and complex
- ⇒ Solution: Learning the distribution via a variational autoencoder (VAE)

System Model

Linear Inverse Problem

$$y = Ah + n$$

- Noisy observation $oldsymbol{y} \in \mathbb{C}^M$
- Observation matrix $\boldsymbol{A} \in \mathbb{C}^{M \times N}, M < N$
 - Hybrid: phase-shift matrix
 - Wideband: selection matrix
- Channel realization $\boldsymbol{h} \sim p(\boldsymbol{h})$ (unknown prior)
- AWGN $\boldsymbol{n} \sim \mathcal{N}_{\mathbb{C}}(\boldsymbol{0},\varsigma^2 \mathbf{I})$
- Further work on MIMO systems¹ and measured data²

 ¹ Baur, Fesl, Utschick, "Leveraging Variational Autoencoders for Parameterized MMSE Channel Estimation," *submitted to IEEE T-SP, arXiv:2307.05352*, 2023.
² Baur, Böck, Turan, Utschick, "Variational Autoencoder for Channel Estimation: Real-World Measurement Insights," WSA, 2024, *to be published*.

Variational Autoencoder – VAE-noisy

- Training: $\mathcal{L}_{\theta,\phi}(\mathbf{h}) = \mathrm{E}_{q_{\phi}(\mathbf{z} \mid \mathbf{y})} \left[\log p_{\theta}(\mathbf{h} \mid \mathbf{z}) \right] \mathrm{D}_{\mathrm{KL}}(q_{\phi}(\mathbf{z} \mid \mathbf{y}) \parallel p(\mathbf{z}))$
- Trained with groud-truth channels h!
- · Conditionally Gaussian (CG) probability distributions are defined as:

$$p_{\boldsymbol{\theta}}(\boldsymbol{h} \mid \boldsymbol{z}) = \mathcal{N}_{\mathbb{C}}(\boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{z}), \boldsymbol{C}_{\boldsymbol{\theta}}(\boldsymbol{z}))$$
$$q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{y}), \operatorname{diag}(\boldsymbol{\sigma}_{\boldsymbol{\phi}}^{2}(\boldsymbol{y})))$$

• Fixed matrix A during the training phase.

Variational Autoencoder – VAE-real

- Training: $\mathcal{L}_{\theta,\phi}(\boldsymbol{y}) = \mathrm{E}_{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{y})} \left[\log p_{\theta}(\boldsymbol{y} \mid \boldsymbol{z}) \right] \mathrm{D}_{\mathrm{KL}}(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{y}) \parallel p(\boldsymbol{z}))$
- Trained solely with noisy observations y!
- CG probability distributions are defined as (exploit y = Ah + n):

$$p_{\theta}(y \mid \boldsymbol{z}) = \mathcal{N}_{\mathbb{C}}(\boldsymbol{A}\boldsymbol{\mu}_{\theta}(\boldsymbol{z}), \boldsymbol{A}\boldsymbol{C}_{\theta}(\boldsymbol{z})\boldsymbol{A}^{\mathrm{H}} + \varsigma^{2}\mathbf{I})$$
$$q_{\phi}(\boldsymbol{z} \mid \boldsymbol{y}) = \mathcal{N}(\boldsymbol{\mu}_{\phi}(\boldsymbol{y}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\boldsymbol{y})))$$

• Matrix A must be varied during the training phase!

VAE-based Channel Estimation

Conditional mean estimation is MSE-optimal

$$\mathbf{E}[\boldsymbol{h} \,|\, \boldsymbol{y}] = \argmin_{\hat{\boldsymbol{h}}} \mathbf{E}\left[\|\boldsymbol{h} - \hat{\boldsymbol{h}}\|_2^2\right] = \mathbf{E}_{\boldsymbol{z}}\left[\mathbf{E}[\boldsymbol{h} \,|\, \boldsymbol{z}, \boldsymbol{y}] \,|\, \boldsymbol{y}\right]$$

+ $\mathrm{E}[h \,|\, {m z}, {m y}] = t_{{m heta}}({m z}, {m y})$ in closed-form due to $h \,|\, {m z}$ being CG:

$$t_{\theta}(\boldsymbol{z}, \boldsymbol{y}) = \boldsymbol{\mu}_{\theta}(\boldsymbol{z}) + \boldsymbol{C}_{\theta}(\boldsymbol{z})\boldsymbol{A}^{\mathrm{H}}(\boldsymbol{A}\boldsymbol{C}_{\theta}(\boldsymbol{z})\boldsymbol{A}^{\mathrm{H}} + \boldsymbol{\varsigma}^{2}\mathbf{I})^{-1}(\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\mu}_{\theta}(\boldsymbol{z}))$$

- Replace $p_{\theta}(\boldsymbol{z} \,|\, \boldsymbol{y})$ with approximation $q_{\phi}(\boldsymbol{z} \,|\, \boldsymbol{y})$ above
- Evaluate $t_{\theta}(z, y)$ with MAP estimate $\mu_{\phi}(y)$ of $q_{\phi}(z \mid y)$:

$$\hat{\boldsymbol{h}}_{\mathsf{VAE}}(\boldsymbol{y}) = t_{\boldsymbol{\theta}}(\boldsymbol{z} = \boldsymbol{\mu}_{\boldsymbol{\phi}}(\boldsymbol{y}), \boldsymbol{y})$$

Covariance Matrix Parameterization

Hybrid System

- SIMO channel $oldsymbol{h} \in \mathbb{C}^N$
- · ULA at BS induces a Toeplitz channel covariance
- · For large arrays, circulant approximation is well motivated:

$$oldsymbol{C}_{oldsymbol{ heta}}(oldsymbol{z}) = oldsymbol{F}^{\mathrm{H}} \operatorname{diag}(oldsymbol{c}_{oldsymbol{ heta}}(oldsymbol{z}))oldsymbol{F}, \, oldsymbol{c}_{oldsymbol{ heta}}(oldsymbol{z}) \in \mathbb{R}^N_+$$

Wideband System

- Doubly-selective fading SISO channel $oldsymbol{H} \in \mathbb{C}^{N_c imes N_t}$
- Toeplitz channel covariance along time and frequency
- Utilize block-Toeplitz matrix:

$$C_{\theta}(z) = C_{\theta,t}(z) \otimes C_{\theta,c}(z) = Q^{\mathrm{H}} \operatorname{diag}(c_{\theta}(z))Q, \quad c_{\theta}(z) \in \mathbb{R}^{4N_{c}N_{t}}_{+}$$

Simulations – Hybrid System

- · Channel covariance according to 3GPP specification
- N = 128 antennas at BS, $N_r = 32$ RF chains
- Phase-shift matrix $A \in \mathbb{C}^{N_r \times N}$ with $A_{i,k} = \frac{1}{\sqrt{M}} \exp(\mathbf{j}\varphi), \varphi \sim \mathcal{U}([0, 2\pi])$

Simulations – Wideband System

- Doubly-selective fading QuaDRiGa channel $oldsymbol{H} \in \mathbb{C}^{N_c imes N_t}$
- + 2.1 GHz center frequency, $180~{\rm kHz}$ bandwidth, $N_c=12,\,N_t=14$
- $N_p = 20$ pilots in lattice layout with selection matrix $oldsymbol{A} \in \{0,1\}^{N_p imes N_c N_t}$

Thank You!

Github:

https://github.com/baurmichael/vae-est-ud/

Appendix

Variational Autoencoder – Further Details

· The log-likelihood can be decomposed as

$$\log p_{\boldsymbol{\theta}}(\boldsymbol{h}) = \mathcal{L}_{\boldsymbol{\theta},\boldsymbol{\phi}}(\boldsymbol{h}) + \mathrm{D}_{\mathrm{KL}}\left(q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{y}) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{z} \mid \boldsymbol{h})\right)$$

with

$$\mathcal{L}_{\boldsymbol{\theta},\boldsymbol{\phi}}(\boldsymbol{h}) = \mathrm{E}_{q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{y})} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{h} \mid \boldsymbol{z}) \right] - \mathrm{D}_{\mathrm{KL}}(q_{\boldsymbol{\phi}}(\boldsymbol{z} \mid \boldsymbol{y}) \parallel p(\boldsymbol{z})).$$

- $\mathcal{L}_{\theta,\phi}(h)$ is the evidence lower bound (ELBO), a lower bound to $\log p_{\theta}(h)$.
- $q_{\phi}(z \mid y)$ is supposed to approximate the intractable $p_{\theta}(z \mid h)$.
- A maximization of the evidence lower bound (ELBO) maximizes the log-likelihood $p_{\theta}(h)$ as well as minimizes $D_{KL}(q_{\phi}(z \mid y) \parallel p_{\theta}(z \mid h))$.

Simulations – RF Chain Number

VAE Estimator – Architecture

