
Less Peaky And More Accurate CTC Forced Alignment by Label Priors
Ruizhe Huang1†, Xiaohui Zhang2, Zhaoheng Ni2, Li Sun5†, Moto Hira2, Jeff Hwang2, Vimal Manohar2, Vineel Pratap2,
Matthew Wiesner1, Shinji Watanabe3, Daniel Povey4, Sanjeev Khudanpur1

1Johns Hopkins University, USA 2Meta AI, USA 3Carnegie Melon University, USA 4Xiaomi Corp., Beijing, China 5Boston University, USA
†Work done during internship at Meta

In this work, we found that the peaky behavior of CTC models can be alleviated by applying
label priors during training. This can generate more accurate forced alignment timestamps than
standard CTC.

TL;DR

(a)

(b)

(c)

Transcript: “yes and that's what i like”

Time (seconds)

peaky

better

Methodology

This is done simply by dividing the CTC posterior probabilities with the label priors during training.

This is a posteriorogram for an utterance from a CTC model
Accumulate label priors

for each label by
summing over the

(unscaled) rows

Divide each row of the
posteriors by its label

priors from last epoch.
Then compute CTC loss

P(π|X): the CTC posterior of a path
π: an alignment path
πt: the label at time t in the path

𝒚πt
t : the CTC posterior for label πt at time t

P(πt) : the label prior for label πt

α: a scaling factor

Pwith priors(π|X) =
T∏

t=1

ytπt
/P (πt)

α

To understand the impact of label priors in the optimization
process, we derive the gradients of the CTC loss with label priors.
The star (⋆) symbol to denote “with priors”. E.g., α⋆t(s), β⋆t(s)
denotes the forward and backward probabilities with priors.

The optimization process just tries to match posterior yt
k with the

proportion of p⋆(W|X) going through the symbol k at time t after the
label priors are applied. This is actually similar to standard CTC.

∂Owith priors

∂ut
k

= ytk −
1

p!(W̄|X)

∑

s∈lab(W̄,k))

α!
t (s)β

!
t (s)

Pctc with priors(W|X) =
∑

π∈B−1(W)

Pwith priors(π|X)

Sum over all paths with dynamic programming
W: a word sequence, which can have many alignment paths
W: the reference word sequence

Experiment Results One More Thing

With a small TDNN-FFN model with 5M parameter, our method significantly
improves alignment accuracy over the standard CTC model and a heuristic-based
approach. We also rival the state-of-the-art Montreal forced aligner (MFA) on
Buckeye and TIMIT corpus, which contains human annotated timestamps.
Nonetheless, our method has a simpler pipeline and faster runtime thanks to GPUs.
Metrics:
• Phoneme or word boundary error (PBE/WBE)
• Phoneme or word average duration (PDUR/WDUR)

MFA vs. ours vs. ground-truth (last column)

CTC with label
priors is better
than standard

CTC

Remarks:
• We varied the neural net configurations (architecture, model size, modeling

unit, and downsampling rate). It turns out TDNN-FFN phoneme model with 5M
params and downsampling rate 2 has the best performance on Buckeye/TIMIT.

• Conformer or LSTM networks do not work well with label priors.
• From the experiments, applying label priors only during decoding, or applying

penalties only to the blank tokens, or using an HMM topology does not have as
good results as using the label priors. Some even degrades performance. These
results agree with previous research.

• Fine-tuning the standard CTC model with the proposed loss works as good as
training with our loss from scratch.

Following the two popular TorchAudio forced alignment tutorials, we provide another
tutorial on obtaining accurate speech-to-text alignment for long audio and noisy text.

In practice, we don't usually have small segments of audio and the corresponding exact
and verbatim transcription to do forced alignment. We usually have the following:
• Long audio, which may not be suitable to be handled as a whole due to, e.g., limited

CPU/GPU memory.
• Noisy long transcripts. It may have significant insertion, deletion or substitution errors.

Long audio
E.g., an hour

Long and noisy text
E.g., 100K words

How to get
alignment??

There are a few existing solutions:
• Kaldi (segment_long_utterances.sh), Gentle (https://github.com/lowerquality/gentle) and some other

work employ a weighted finite state transducer (WFST) framework to model noisy
texts. Gentle uses Kaldi’s acoustic model and has an easy-to-use interface.

• WhisperX (https://github.com/m-bain/whisperX) uses attention mechanism to propose rough
time stamps for uniformly segmented audio. Then, it performs phone-level or word-
level forced alignment with an external aligner.

• MMS (https://arxiv.org/abs/2305.13516) uses a special <star> token to handle missing words.
• SailAlign iteratively identifies reliable regions and narrows down to align the

remaining unaligned regions.

Our tutorial is based on WFST and thus falls in the first category. Our library and imple-
mentation is based on PyTorch. Any CTC model in PyTorch can be equipped with our
library to become a robust aligner! This makes our aligner distinguish from existing ones.

We will demonstrate aligning a whole book, e.g., Walden by Henry
David Thoreau (of 115K words), with its audiobook chapter (of 30
minutes) in the LibriVox project. This is similar to preparing the
Librispeech corpus from raw data! However, today, we will have an
easy-to-use, pretrained/finetuned neural network based solution!
Please feel free to try it out! Scan the QR code to access the tutorial.

We use a modified version of factor transducer to allow ins/del/sub errors in the long
and noisy transcript. The best path in the transducer+CTC output will be the alignment.

Contact information: ruizhe@jhu.edu zni@meta.com

Note: we found the CTC loss implemented in
PyTorch doesn’t support this. Please check out
the issue #122243 in PyTorch repo. We used k2
library to compute CTC loss instead.

⚠

MFA Ours

Ours

It turns out onset timestamp gets
more improvement than offset.

https://github.com/lowerquality/gentle
mailto:ruizhe@jhu.edu
mailto:zni@fb.com

