Paper ID: 1879

CROSS BRANCH FEATURE FUSION DECODER FOR CONSISTENCY REGULARIZATION-BASED SEMI-UPERVISED CHANGE DETECTION

Yan Xing¹, Qi'ao Xu², JingCheng Zeng², Rui Huang²*, Sihua Gao², Weifeng Xu³, YuXiang Zhang², Wei Fan²
¹College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
²College of Computer Science and Technology, Civil Aviation University of China, Tianjin, China
³Department of Computer, North China Electric Power University, Beijing, China

NOLDNO

- Semi-supervised change detection (SSCD) utilizes partially labeled data and a large amount of unlabeled data to detect pixellevel changes, which has wide applications in different fields.
- Existing SSCD methods primarily rely on CNN for extracting meaningful features from limited labeled data. However, transformer-based SSCD methods lag behind in performance,

particularly in scenarios with scarce labeled data.

 We combine the strengths of transformer and convolution, leveraging both global and local features to enhance feature representation with limited labeled data.

 Motivation: Comparison of SSCD with decoders of transformer, convolution, and ours by 5% labeled data. Sup-only denotes that our method utilizes only this limited labeled data for training. • In the supervised training phase, we use labeled training data to train the change detection network Φ .

 In the unsupervised training phase, we employ strong-to-weak consistency regularization, utilizing the change map generated from weakly augmented input to create pseudo-labels.

Change Detection Network

 Firstly, we apply Siamese ResNet-50 to extract basic features, and calculate the difference features.

 We compare the proposed method with seven SSCD methods.

 All compared methods are implemented with PyTorch and trained with on the same training sets.

 The training set is divided into labeled and unlabeled data with ratios of [5%, 95%], [10%, 90%], [20%, 80%], and [40%, 60%].

Dataset-01: WHU-CD

Method	WHU-CD								
	5%		10%		20%		40%		
	loU	OA	loU	OA	loU	OA	IoU	OA	
AdvEnt	57.7	97.87	60.5	97.79	69.5	98.50	76.0	98.91	
s4GAN	57.3	97.94	58.0	97.81	67.0	98.41	74.3	98.85	
SemiCDNet	56.2	97.78	60.3	98.02	69.1	98.47	70.5	98.59	
SemiCD	65.8	98.37	68.0	98.45	74.6	98.83	78.0	99.01	
RC-CD	57.7	97.94	65.4	98.45	74.3	98.89	77.6	99.02	
SemiPTCD	74.1	98.85	74.2	98.86	76.9	98.95	80.8	99.17	
UniMatch	7 <mark>8</mark> .7	99.11	79.6	99.11	81.2	<mark>99.18</mark>	83.7	<mark>99.</mark> 29	
Ours	81.0	99.20	81.1	99.18	83.6	<mark>99.2</mark> 9	86.5	99.4 3	
		Datas	et-02	2: LE\	/IR-0	D			
				LEVI	R-CD				

- Secondly, to extract richer feature information, Atrous Spatial Pyramid Pooling (ASPP) is used in the Bottleneck.
- Finally, we propose the Cross Branch Feature Fusion (CBFF) decoder, incorporating a Local Convolutional Branch (LCB) and a Global Transformer Branch (GTB), to generate accuate change maps.

Ours	82.6	99.05	83.2	99.08	83.2	99.09	83.9	99.12
UniMatch	82.1	99.03	82.8	99.07	82.9	99.07	83.0	99.08
SemiPTCD	71.2	98.39	75.9	98.65	76.6	98.65	77.2	98.74
RC-CD	67.9	98.09	72.3	98.40	75.6	98.60	77.2	98.70
SemiCD	74.2	98.59	77.1	98.74	77.9	98.79	79.0	98.84
SemiCDNet	67.4	98.11	71.5	98.42	74.9	98.58	75.5	98.63
s4GAN	66.6	98.16	72.2	98.48	75.1	98.63	76.2	98.68
AdvEnt	67.1	98.15	70.8	98.38	74.3	98.59	75.9	98.67

10%

OA

IoU

20%

IoU

OA

40%

OA

IoU

Method

5%

OA

IoU

⊖ Absolute Difference © Concatenation ⊕ Element-wise Sum CBR Conv + BN + ReLU

CONCLUSION

- We introduce a new decoder, Cross Branch Feature Fusion (CBFF), which consists of two branches: a local convolutional branch and a global transformer branch.
- Using CBFF, we have built a SSCD model based on a strong-to-weak consistency strategy.
- Experiments on two benchmark datasets demonstrate that our method outperforms seven state-of-the-art SSCD methods.

Contact e-mail: 2021052074@cauc.edu.cn