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ABSTRACT
Dementia is a severe cognitive impairment that affects the
health of older adults and creates a burden on their families
and caretakers. This paper analyzes diverse hand-crafted fea-
tures extracted from spoken languages and selects the most
discriminative ones for dementia detection. Recently, the per-
formance of dementia detection has been significantly im-
proved by utilizing Transformer-based models that automati-
cally capture the structural and linguistic properties of spoken
languages. We investigate Transformer-based features and
propose an end-to-end system for dementia detection. We
also explore recent ASR and representation learning frame-
works, such as Wav2vec 2.0 and Hubert, for transcribing a
Cantonese corpus that contains recordings of older adults de-
scribing the rabbit story. We investigate using disfluency pat-
terns (DP) in spontaneous speech to enhance the recognized
word sequences for the Transformer-based feature extractor.
Results show that fine-tuning the feature extractor using the
enhanced word sequences can improve dementia detection
performance.

Index Terms— Dementia detection, Feature selection,
ASR, Disfluency pattern, Transformer

1. INTRODUCTION

Dementia is the loss of cognitive functions (thinking, remem-
bering, and reasoning) that seriously devastates the daily lives
of the afflicted patients. The most common form of dementia
is the Alzheimer’s disease (AD), which may contribute to 60–
70% of dementia cases. According to the World Alzheimer’s
Report,1 more than 55 million people live with dementia
worldwide, and there are nearly 10 million new cases every
year. In 2019, the estimated global societal cost of demen-
tia was $1.3 trillion, and these costs are expected to surpass
$2.8 trillion by 2030. The disease has a huge impact on the
quality of life of not only the patients but also their families
and caretakers. Fortunately, with effective detection of early
dementia, disease-modifying medications and interventions
are possible [1].

1https://www.who.int/news-room/fact-sheets/
detail/dementia

1.1. Related Work

Recently, automatic detection of dementia through speech
and language analyses has gathered attention in the research
community. Some studies investigated different types of
speech-based features for dementia detection. For example,
some studies used acoustic information (e.g., speech/silence
segments and voice quality [2]) from speech waveforms to
discover potential dementia. More recently, Haider et al. [3]
compared different types of paralinguistic features – includ-
ing eGeMAPS [4], ComParE 2013 [5], Emobase [5], and
MRCG [6] – for dementia detection. As the paralinguistic
features are high-dimensional, Pearson’s correlation (Pea-
Corr) tests were performed to reduce the feature dimensions.

In addition to speech-based features, transcription-based
features have also been used for dementia detection. These
features can be extracted from automatic or manual transcrip-
tions, which capture the semantic, syntactic, and lexical as-
pects of the speaker’s utterances. For example, Qiao et al.
[7] combined disfluency and linguistic complexity features
for AD detection. The linguistic complexity features (syn-
tactic complexity, lexical richness, register-based n-gram fre-
quency, and information-theoretic measures) were generated
by analyzing the transcriptions using the Complexity Contour
Generator (CoCoGen) [8].

1.2. Modeling Approach

The modeling approach presented in this paper is built on
key insights from the above studies by combing hand-crafted
features and text embeddings for dementia detection. The
text embeddings are extracted from transformer-based mod-
els. For example, in [7], the BERT [9] model was fine-tuned
to capture the language characteristics of AD patients. We
build an end-to-end system containing two branches to thor-
oughly model the hand-crafted features and text embeddings,
as shown in Figure 1. Branch 1 extracts hand-crafted features,
followed by feature selection (FS) to select the discriminative
features. Branch 2 is built on text embeddings. We obtain
the final score for the whole speech recording by averaging
the scores from the two branches. The proposed system is
evaluated on a Cantonese corpus called CU-MARVEL.

https://www.who.int/news-room/fact-sheets/detail/dementia
https://www.who.int/news-room/fact-sheets/detail/dementia


Wav2Vec2/Hubert 
with language model

Transcription-based 
feature extraction

Speech-based 
feature extraction

concatenation
Feature selection 
(PeaCorr + DDR)

Selected features

Soft voting

SVM classifier

VAD

Branch 1

Branch 2

Mean Pooling

Text tokenizer

ELECTRA for sequence  classification

concatenation DNN classifier

3 last hidden states

COVAREP, IS10, Emobase, 
ComparE and eGeMAPS

Lexical, syntactic, and 
semantic features

Tokens

Fig. 1. Our end-to-end system to detect dementia from spontaneous Cantonese. The recording A(i) is segmented using voice
activity detection (VAD) into n segments. Branch 1 is built on hand-crafted features, and Branch 2 is built on text embeddings.
CS: Confidence score; DP: Disfluency pattern. The final label Y (i) for the whole speech recording is obtained by averaging the
scores from the two branches.

2. METHODS

2.1. Feature Selection on Hand-crafted Features

While various types of speech-based features and transcription-
based features have been used for dementia detection, it is
still unclear which features or their combinations are more
effective. We built on key insights from the previous studies
and utilized feature selection (FS) to find the most effec-
tive features for dementia detection. The transcription-based
features (Figure 1, Branch 1) are described as follows. (1)
Lexical features. With automated speech transcriptions, the
Hanlp library was utilized to perform segmentation and part-
of-speech (POS) tagging.2 After that the following features
were extracted: POS ratio, the ratio of pronoun to noun,
and the ratio of noun to verb. We also measured the lexical
richness by calculating the type-token-ratio. We counted the
number of top-10 fillers in Cantonese and normalized it by the
total number of word tokens in the transcriptions. (2) Syntac-
tic features. We converted the transcriptions into simplified
Chinese and measured the syntactic complexity in Chinese
writing [10]. (3) Semantic features. Word specificity and am-
biguity were computed based on tree depth and the number
of senses in NLTK WordNet [11]. We then computed seman-
tic similarity using the mean and minimum cosine distances
between the one-hot embeddings of each pair of utterances
[12].

The speech-based features (Figure 1, Branch 1) include
COVAREP features [13] and four paralinguistic features sets,
which are INTERSPEECH 2010 Paralinguistic Challenge
Features (IS10) [14], Emobase [5], eGeMAPS [4], and Com-
ParE [5].

We combined all the feature listed above and applied dual-
dropout ranking (DDR) [15] to rank and select features. We
have applied DDR to select linguistic features for dementia
detection in our previous research [15].

2https://github.com/hankcs/HanLP

2.2. Text Embedding with Confidence Scores

We used the erroneous automatic transcriptions to build the
text embeddings in Branch 2 of Figure 1. The erroneous tran-
scriptions could impact the performance of dementia detec-
tion. To mitigate this problem, Pan et al. [16] used the con-
fidence scores from an ASR system as a proxy measure for
accuracy. They incorporated confidence scores into the text
embeddings, which provides the classifier with information
about the transcription quality.

We also incorporated confidence scores into the text em-
beddings to mitigate the effect of erroneous transcriptions.
We followed the structure in [16] and concatenated the last
three hidden states of the ELECTRA3 model with confidence
scores as input to the classifier, as shown in Figure 1 (Branch
2). Additionally, we augmented the input of the ELECTRA
model with multiple hypotheses generated by an ASR system.
In addition to the best hypothesis, the ASR system with a lan-
guage model can use different parameters to produce multi-
ple hypotheses. With the range of language model’s weight
from 0.5 to 5 and the word score from 0 to 0.5, we produced
20 ASR hypotheses and confidence scores for each speech
recording.

2.3. Text Embeddings with Disfluency Patterns

Disfluency – including silent pauses, filled pauses, repeti-
tions, self-corrections, and discourse incoherence – is part of
spontaneous speech. However, dementia patients manifest
different patterns of disfluencies in spontaneous speech. For
example, Yuan et al. [17] reported that AD patients have
more pauses than healthy controls (HCs), especially the long
pauses. They coded short (under 0.5 seconds), medium (0.5–
2 seconds), and long (over 2 seconds) pauses using three
special tokens <,> , <.>, and <...> to express the pauses
in transcriptions. Their results demonstrate that using the

3https://huggingface.co/toastynews/
electra-hongkongese-base-discriminator
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Fig. 2. The upper panel shows the disfluency pattern (DP)
of a dementia patient, and the lower panel shows the DP of
a healthy control. α and β refer to the time period in Stage
1 (building content) and Stage 2 (expressing content), respec-
tively. It demonstrates that β/α of the dementia patient is
quite small because the patient does not express enough con-
tent even after a long pause.

transcriptions with pauses to fine-tune a BERT model can
improve the performance of AD detection.

Inspired by [17], in addition to the pauses, we investigated
the disfluency pattern (DP) in spontaneous speech, as shown
in Figure 2. We divided the process of expressing sponta-
neous speech into two stages: Stage 1 (the pause) builds con-
tent in mind and Stage 2 expresses the content. The time
period α in Stage 1 indicates how long a speaker takes to
build the content. The time period β in Stage 2 indicates how
much content a speaker has built in Stage 1. The β/α of the
healthy control (HC) is large because the HC expresses lots
of content after a thinking period. However, the β/α of the
NCD patient is quite small because the patient does not ex-
press enough content even after a long pause, which indicates
language impairment. The DP not only expresses the pauses
but also indicates how much content a speaker has built in the
period of pausing. For each speech segment in Figure 2, the
time alignment information from the ASR system was used
for measuring α and β. If α > a and β/α < b, we inserted a
token <DP> to the corresponding words of transcriptions. We
determined the best possible a and b using cross-validations
(CV). The transcriptions with DP were used to fine-tune the
ELECTRA model for dementia detection.

3. EXPERIMENTAL PROCEDURES

The CU-MARVEL dataset was collected by the CUHK for a
Theme-based Research Project (Ref.: T45-407/19-N). A se-
ries of cognitive tests including Montreal Cognitive Assess-
ment (MoCA) tests and picture description tests were given to
each participant for assessing the mild cognitive impairment
(MCI) and dementia in older adults. According to the assess-
ment results, 461 participants were divided into three groups:
(1) 281 healthy older adults (HCs); (2) 144 older adults hav-

ing minor neurocognitive disorders (minor NCD); and (3) 36
older adults suffering from major NCD.

For detecting dementia, we combined minor NCD and
major NCD into one category called possible dementia. Ac-
cording to the age and gender distribution, 120 participants
(60 HCs and 60 possible dementia) were selected as the test
data. A rabbit story picture description task was selected for
the experiments. The performance metrics include accuracy
(ACC), precision (PRE), recall (REC), and F1 score with re-
spect to the possible dementia category. The performance
on the training data was obtained by 10-fold cross-validation
(CV).

Because only a small subset of the dataset has manual
transcriptions, automatic speech recognition (ASR) was ap-
plied to generate the transcriptions. Two self-supervised
models, Wav2vec 2.0 [18] (denoted as Wav2vec2 from now
on) and Hubert [19] were utilized for end-to-end ASR.
Wav2vec2 and Hubert can learn powerful representations
from a large amount of unlabeled speech data. By fine-tuning
the models on a small amount of transcribed speech, these
models can achieve similar performance as traditional fully-
supervised ASR. As there is no Cantonese pre-trained version
of Wav2vec2 or Hubert, we adopted multilingual and Chi-
nese pre-trained versions of Wav2vec2 and Hubert from the
Transformer Python library, including Wav2vec2-large-xlsr,4

Wav2vec2-large-Chinese,5 and Hubert-large-Chinese.6

The Cantonese version of Common Voice Speech dataset
[20] (common-voice-zh-HK) was used for fine-tuning. The
PyCantonese library was utilized to convert the transcriptions
to corresponding phone sequences.7 The acoustic models
were end-to-end fine-tuned on phone-level using connection-
ist temporal classification (CTC) loss. The fine-tuned acoustic
models were tested on common-voice-zh-HK test data. The
phone error rate (PER) for Wav2vec2-large-xlsr, Wav2vec2-
large-Chinese, and Hubert-large-Chinese were 0.112, 0.183,
and 0.107, respectively. Therefore, Hubert-large-Chinese
was selected for transcribing the CU-MARVEL corpus. The
outputs of the fine-tuned acoustic models were decoded us-
ing a beam search decoder with a 4-gram KenLM language
model trained on common-voice-zh-HK.

4. RESULTS AND DISCUSSIONS

4.1. Performance of Feature Selection

We first evaluate the recognition performance of the full fea-
tures before FS. We used a Gaussian SVM with C = 1 as the
classifier to distinguish the possible dementia and the HCs, as

4https://huggingface.co/facebook/
wav2vec2-large-xlsr-53

5https://huggingface.co/TencentGameMate/
chinese-wav2vec2-large

6https://huggingface.co/TencentGameMate/
chinese-hubert-large

7https://pycantonese.org/
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Table 1. Classification performance of different feature types.
The numbers in the brackets are the sizes of the feature sets.

Feature set 10-fold CV on training data Performance on test data
ACC F1 ACC F1

Transcription-based (361) 0.678 0.577 0.667 0.638

COVAREP (518) 0.684 0.562 0.650 0.615
IS10 (1582) 0.704 0.599 0.692 0.670
Emobase (988) 0.705 0.605 0.675 0.645
eGeMAPS (88) 0.720 0.624 0.658 0.627
CompParE (6373) 0.707 0.588 0.667 0.641
All features (9910) 0.712 0.589 0.700 0.677

PeaCorr + DDR (18) 0.705 0.628 0.708 0.699

Table 2. Classification performance of different numbers of
features selected by PeaCorr.

Feature dimension 10-fold CV on training data
ACC PRE REC F1

250 0.701 0.675 0.618 0.610
500 0.708 0.685 0.622 0.623
750 0.707 0.684 0.621 0.613

1,000 0.706 0.682 0.620 0.611
1,500 0.704 0.682 0.616 0.607

shown in Table 1. Considering that the feature dimension is
very high, filter methods were utilized to reduce the feature
dimension before applying DDR to select features. On the
training partitions of individual folds, we applied Pearson’s
correlation (PeaCorr) tests to reduce the feature dimension
from 9910 to {250, 500, 750, 1000, 1500}, as shown in Ta-
ble 2. By reducing the feature dimension to 500, we obtained
the best CV performance on the training data. Therefore, on
the training partitions of individual folds, subsequent exper-
iments utilized PeaCorr to reduce the feature dimension to
500. On the pre-screened features, we further applied DDR
to select discriminative features. We followed [15] and ob-
tained the optimal feature subsets by varying the number of
selected features through CV. The optimal feature subset was
obtained when the highest F1 score was achieved in the CV,
which is 18, as shown in Table 1. DDR significantly reduces
the feature dimensions and achieves the best recognition per-
formance on the training data.

4.2. Evaluation on Text Embeddings

When fine-tuning the ELECTRA model, we determined the
best possible hyper-parameter settings using grid-search and
CV. The evaluation results are shown in Table 3, which
shows that concatenating the text embeddings with confi-
dence scores can substantially improve performance. When
encoded with DP, recognition performance is further im-
proved. We depict the distributions of β/α in Figure 3.

4.3. Fusing Two Branches on Test Data

On test data, the selected features from Branch 1 of Figure 1
were used to obtain recognition results. At the same time,

Fig. 3. The distributions of β/α (when α > 0.25 seconds)
in HCs and dementia patients. The dementia patients have
more β/α in the range [0,3) compared with the healthy con-
trols, which indicates that the dementia patients do not ex-
press enough content even after a long duration of thinking or
pausing.

Table 3. Classification performance on text embeddings.
CS: confidence scores; DP: disfluency patterns; e=epochs;
mwl=max word length; bs=batch size.

Methods 10-fold CV ParametersACC F1

Multiple hypotheses 0.651 0.612 e=4, mwl=128, bs=32
Multiple hypotheses + CS 0.701 0.645 e=4, mwl=128, bs=32
Multiple hypotheses + DP 0.665 0.627 e=4, mwl=128, bs=32
Multiple hypotheses + CS + DP 0.707 0.646 e=4, mwl=128, bs=32, a=0.25 sec, b=3.0

Table 4. Final classification results on the test data.
Method Performance on test data

ACC PRE REC F1

PeaCorr + DDR (Branch 1) 0.708 0.737 0.708 0.699
Multiple hypotheses + CS + DP (Branch 2) 0.742 0.754 0.742 0.739
Branch 1 + Branch 2 0.750 0.764 0.750 0.747

we selected the best model from Branch 2 to obtain recog-
nition results. Finally, we fused the two recognition results
by averaging the scores from the two branches, as shown in
Table 4. It shows that the recognition performance of Branch
2 is significantly better than Branch 1. When fusing the two
branches, even a better performance has been achieved.

5. CONCLUSIONS

The Hubert model was used to transcribe the CU-MARVEL
corpus. We presented an end-to-end system containing two
branches and evaluated the system on the corpus for demen-
tia detection. We utilized disfluency patterns to improve de-
tection performance. The combination of the two branches
further improves the performance on the test data.
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