2023 IEEE International Conference on Acoustics，Speech and Signal Processing 4－10 UUNE，RHODES ISLAND，GREECE＿

LiQuid－MIMO Radar：Distributed MIMO Radar with Low－Bit Quantization

NANJNG UNINERSITY OF SCIENCE \＆TECHNOLOGY

CONTRIBUTIONS

Motivation：Reduce the cost，energy consumption，and system complexity of distributed MIMO radar systems
Key idea：
＞Using low－resolution ADCs to reduce the data transmission volume
Formulate a QRPCA problem to recover the infinite－precision data
$>$ Develop an APG－based algorithm to solve the QRPCA problem
Result：Develop a low－bit quantized distributed MIMO radar（LiQuiD－MIMO radar） Low－resolution ADCs＋Data recovery＋Parameter Estimation

LiQuid－MIMO Radars Mode

Signal Model

－Time delay

$$
\tau_{m n}^{(k)}=\frac{\left\|\mathbf{p}^{(k)}-\mathbf{p}_{t}^{(k)}\right\|+\left\|\mathbf{p}^{(k)}-\mathbf{p}_{r}^{(k)}\right\|}{c}
$$

Doppler frequency

$$
f_{m n}^{(k)}=\frac{f_{m}}{c}\left(\frac{\left\langle\mathbf{v}^{(k)}, \mathbf{p}^{(k)}-\mathbf{p}_{t}^{(m)}\right\rangle}{\left\|\mathbf{p}^{(k)}-\mathbf{p}_{t}^{(m)}\right\|}+\frac{\left|\mathbf{v}^{(k)}, \mathbf{p}^{(k)}-\mathbf{p}_{r}^{(m)}\right\rangle}{\left\|\mathbf{p}^{(k)}-\mathbf{p}_{r}^{(m)}\right\|}\right)
$$

Received signal

$$
y_{m n}(t)=\sum_{q=0}^{Q-1} \sum_{k=1}^{K} \beta_{m n}^{(k)} s_{m}\left(t-\tau_{m n}^{(k)}-q T_{\mathrm{PRI}}\right) e^{j 2 \pi f_{m n}^{(k)} q T_{\mathrm{PRI}}}+w_{m n}(t)
$$

－$s_{m}(t)$ could be FDMA waveforms
Task：Resolve the K position and velocity pairs $\left\{\mathbf{p}^{(k)}, \mathbf{v}^{(k)}\right\}_{k=1}^{K}$ from received signals

Sampling and Quantization with Low－Resolution ADC

QUsing the low－resolution ADCs：each data is quantized into \tilde{b} bits，e．g．，$\tilde{b}=2,3,4$ \square Send quantized data to fusion center．
$\square \mathbf{X}_{m n}$ ：Target information matrix（TIM）； $\mathbf{W}_{m n}$ ：White Gaussian Noise（WGN）；
$\widetilde{\mathbf{T}}_{m n}$ ：Data transmission error（DTE）
$\mathbf{Y}_{m n}=\mathbf{X}_{m n}+\mathbf{W}_{m n} \Longrightarrow \widetilde{\mathbf{Z}}_{m n}=Q_{c}^{\gamma, b}\left(\mathbf{X}_{m n}+\mathbf{W}_{m n}\right) \Longrightarrow \boldsymbol{Z}_{m n}=q_{c}^{\gamma, b}\left(\mathbf{X}_{m n}+\mathbf{W}_{m n}\right)+\widetilde{\mathbf{T}}_{m n}$

QRPCA Problem Formulation

$\square \mathbf{Z}=Q_{C}^{\gamma, b}(\mathbf{X}+\mathbf{W})+\widetilde{\mathbf{T}}$ can be equivalent to $\mathbf{Z}=Q_{C}^{\gamma, b}(\mathbf{X}+\mathbf{T}+\mathbf{W})$（omitting the subscript mn）
－ \mathbf{X} ：Low rank．Its rank depends on the number of targets with different distances or different velocities
－$\widetilde{\mathbf{T}}:$ Sparse．It is generally sparse since the bit error rate（BER）is generally quite low．
－T ：Sparse．It is an equivalent sparse DTE before quantization．
\square Recover the low－rank matrix \mathbf{X} and the sparse matrix \mathbf{T} by solving QRPCA problem．
－Function $D(\cdot ;)$ is similarity metric which measures the similarity between the quantized data \mathbf{Z} and the unquantized data $\mathbf{Y}=\mathbf{X}+\mathbf{T}$

$$
\begin{array}{ll}
-\frac{\Delta}{2} \leq \mathfrak{R}\{\mathbf{Y}-\mathbf{Z}\} \leq \frac{\Delta}{2} \quad \longrightarrow & =\| \rho([\mathfrak{Z} \mathbf{X}+\mathbf{T}) \\
-\frac{\Delta}{2} \leq \mathfrak{T}\{\mathbf{Y}-\mathbf{Z}\} \leq \frac{\Delta}{2} & \left.\left.\left.+\left\|\rho\left(\left[\mathfrak{X}\{\mathbf{Z}-\mathbf{Z}\}+\frac{\Delta}{2} ; \Im\{\mathbf{X}-\mathbf{T}\}+\frac{\Delta}{2} ; \mathfrak{T}\{\mathbf{Z}-\mathbf{Z}\}+\frac{\Delta}{2}\right]\right)\right\|_{F}^{2} \mathbf{T}\right\}+\frac{\Delta}{2}\right]\right) \|^{2}
\end{array}
$$

where $\rho(\cdot)$ is an element－wise function with $\rho(x)=\max \{-x, 0\}$

$\min _{\mathbf{X}, \mathbf{T}} \frac{1}{2} D(\mathbf{Z}, \mathbf{X}+\mathbf{T})+\mu\|\mathbb{X}\|_{*}+\lambda\|\mathbb{T}\|_{1}$

Low rank Sparse

Method

APG－QRPCA Algorithm
Define $h(\mathbf{X}, \mathbf{T})=\mu\|\mathbf{X}\|_{*}+\lambda\|\mathbf{T}\|_{1}$ and $g(\mathbf{X}, \mathbf{T})=\frac{1}{2} D(\mathbf{Z}, \mathbf{X}+\mathbf{T})$ ，
$h(\mathbf{X}, \mathbf{T})$ is convex ，and $g(\mathbf{X}, \mathbf{T})$ is differentiable
\square The QPRCA problem can be rewritten as $\min _{\mathbf{X}, \mathbf{T}} h(\mathbf{X}, \mathbf{T})+g(\mathbf{X}, \mathbf{T})$
Iteratively calculate

$$
\begin{array}{ll}
\boxed{\text { Calculate momentum }} & \overline{\mathbf{X}}_{l}=\mathbf{X}_{l}+\frac{\zeta_{l}-1}{\zeta_{l}}\left(\mathbf{X}_{l}-\mathbf{X}_{l-1}\right), \overline{\mathbf{T}}_{l}=\mathbf{T}_{l}+\frac{\zeta_{l}-1}{\zeta l}\left(\mathbf{T}_{l}-\mathbf{T}_{l-1}\right) \\
\text { - Gradient descent } & \mathbf{x}_{p}=\overline{\mathbf{x}}_{l}-\delta \nabla_{\mathbf{x}} g\left(\overline{\mathbf{X}}_{l}, \overline{\mathbf{T}}_{l}\right), \mathbf{T}_{p}=\overline{\mathbf{T}}_{l}-\delta \nabla_{\mathbf{T}} g\left(\overline{\mathbf{X}}_{l}, \overline{\mathbf{T}}_{l}\right) \\
\boxed{\text { Proximal map }} & \mathbf{X}_{l+1}=\arg \min _{\mathbf{X}}\left\{\mu\|\mathbf{X}\|_{*}+\frac{1}{2 \delta}\left\|\mathbf{X}-\mathbf{X}_{p}\right\|_{F}^{2}\right\}=\mathbf{U}_{p} \delta_{\mu \delta}\left(\mathbf{\Sigma}_{p}\right) \mathbf{V}_{p}^{T}, \\
& \mathbf{T}_{l+1}=\arg \min _{\mathbf{T}}\left\{\lambda\|\mathbf{T}\|_{1}+\frac{1}{2 \delta}\left\|\mathbf{T}-\mathbf{T}_{p}\right\|_{F}^{2}\right\}=\delta_{\lambda \delta}\left(\mathbf{T}_{p}\right)
\end{array}
$$

LS－based Target Parameter Estimation

$M_{t} \times M_{r}$ TIM matrixes can be recovered at the fusion center

\square A sequential LS method introduced to sequentially estimate the position and velocity parameters．

$$
\boldsymbol{\boldsymbol { \theta } _ { p }}=\left\{\mathbf{p}^{(k)}\right\}_{k=1}^{K} \text { and } \boldsymbol{\theta}_{v}=\left\{\mathbf{v}^{(k)}\right\}_{k=1}^{K} \text { are implicitly determined by } \mathbf{A}_{m n} \text { and } \mathbf{B}_{m n}
$$

Numerical Example

$M_{t}=3$ transmit antennas，$M_{r}=10$ receive antennas，uniformly distributed on the concentric circles with radius 5 km and 3 km ，respectively．The reference carrier frequency parameters $f_{0}=5 \mathrm{GHz}$ and the frequency increment $\Delta f=50 \mathrm{MHz}$ ．One CPI consists of $Q=128$ pulses with $T_{\text {PRI }}=0.5 \mathrm{~ms}$ and $T_{p}=6.4 \mu \mathrm{~s}$ ．The transmitters emit Hadamard sequences with length of $N=64$ ． 1% symbol error rate is assumed to lead sparse data transmission error matrix．One target is located at $\mathrm{p}^{(1)}=[1100,1100]^{T} \mathrm{~m}$ with $v^{(1)}=$ $[10,10]^{T} \mathrm{~m} / \mathrm{s}$ ．

Conclusions

Propose a low－bit quantized distributed MIMO radar system；
\square Formulate a QRPCA problem to recover the infinite－precision target information matrix and the data transmission errors simultaneously；
\square Demonstrate the feasibility of implementing a low－bit quantized distributed MIMO radar system
The analysis of the performance bound of the proposed LiQuiD－MIMO radar will be our future work

