

LiQuiD-MIMO Radar: Distributed MIMO Radar with Low-Bit Quantization

Yikun Xiang, Feng Xi, Shengyao Chen

June 2023

Nanjing University of Science and Technology, China

Distributed MIMO Radar

- Antennas spread out over a larger area Spatial diversity is exploited to improve the target detection performance □ Joint process at the fusion center by collecting all the data Emerging applications: radar imaging, stealth targets detection, and so on Practical challenges $s_1(t)$ $(y_1(t))$ Cost $s_2(t)$ $y_n(t)$ Power consumption Fusion center
 - System complexity

 $y_{M_r}(t)$

 $s_{M_t}(t)$

 $\leq s_m(t)$

Cost-Efficient Solutions

Analog-to-digital converters (ADCs) are costly and power-consuming at high bit rates

- A large amount of data has to be transmitted to the fusion center
- Current solutions mainly for collocated MIMO radar
 - Reduce sampling rate, e.g., sub-Nyquist MIMO radar (Cohen et al TSP18)
 - Reduce quantized bits, e.g., one-bit MIMO radar (Xi et al TSP20)
 - Optimize quantizers, e.g., Bit-Limited MIMO Radar (Xi et al TSP21)

Our solution: develop a low-bit quantized distributed MIMO radar (LiQuiD-MIMO radar)

Outline

LiQuiD-MIMO Radar Model

- Quantized Robust PCA (QRPCA) Problem Formulation
- □ Our Method: APG-QRPCA Algorithm + LS-based Target Parameter Estimation
- Numerical results

LiQuiD-MIMO Radar Model

A. Signal Model

We assume that all the targets are distributed in the same 2-D plane where the transmit and receive antennas are located.

- Time delay $\tau_{mn}^{(k)} = \frac{\left\| \mathbf{p}^{(k)} \mathbf{p}_{t}^{(k)} \right\| + \left\| \mathbf{p}^{(k)} \mathbf{p}_{r}^{(k)} \right\|}{c}$ Doppler frequency $f_{mn}^{(k)} = \frac{f_{m}}{c} \left(\frac{\left\{ \mathbf{v}^{(k)}, \mathbf{p}^{(k)} \mathbf{p}_{t}^{(m)} \right\}}{\left\| \mathbf{p}^{(k)} \mathbf{p}_{t}^{(m)} \right\|} + \frac{\left\{ \mathbf{v}^{(k)}, \mathbf{p}^{(k)} \mathbf{p}_{r}^{(m)} \right\}}{\left\| \mathbf{p}^{(k)} \mathbf{p}_{r}^{(m)} \right\|} \right)$ Received signal: $y_{mn}(t) = \sum_{q=0}^{Q-1} \sum_{k=1}^{K} \beta_{mn}^{(k)} s_{m}(t \tau_{mn}^{(k)} qT_{\text{PRI}}) e^{j2\pi f_{mn}^{(k)} qT_{\text{PRI}}} + w_{mn}(t)$
- \Box $s_m(t)$ could be FDMA waveforms
- GOAL: Resolve the K position and velocity pairs $\{\mathbf{p}^{(k)}, \mathbf{v}^{(k)}\}_{k=1}^{K}$ from received signals.

LiQuiD-MIMO Radar Model

B. Sampling and Quantization with Low-Resolution ADCs

Using the low-resolution ADCs: each data is quantized into \tilde{b} bits, e.g., $\tilde{b} = 2, 3, 4$;

- Send quantized data to fusion center.
- **X**_{mn}:Target information matrix (TIM); **W**_{mn} :White Gaussian Noise (WGN); $\tilde{\mathbf{T}}_{mn}$:Data transmission error (DTE).

$$\mathbf{Y}_{mn} = \mathbf{X}_{mn} + \mathbf{W}_{mn} \implies \widetilde{\mathbf{Z}}_{mn} = \mathcal{Q}_{C}^{\gamma,b}(\mathbf{X}_{mn} + \mathbf{W}_{mn}) \implies \mathbf{Z}_{mn} = \mathcal{Q}_{C}^{\gamma,b}(\mathbf{X}_{mn} + \mathbf{W}_{mn}) + \widetilde{\mathbf{T}}_{mn}$$

QRPCA Problem Formulation

 $\Box \mathbf{Z} = \mathcal{Q}_{C}^{\gamma,b}(\mathbf{X} + \mathbf{W}) + \widetilde{\mathbf{T}}$ can be equivalent to $\mathbf{Z} = \mathcal{Q}_{C}^{\gamma,b}(\mathbf{X} + \mathbf{T} + \mathbf{W})$ (omitting the subscript mn).

- **X** : Low rank. Its rank depends on the number of targets with different distances or different velocities.
- $\tilde{\mathbf{T}}$: Sparse. It is generally sparse since the bit error rate (BER) is generally quite low.
- **T** : Sparse. It is an equivalent sparse DTE before quantization.

 \Box Recover the low-rank matrix **X** and the sparse matrix **T** by solving QRPCA problem.

■ Function *D*(·,·) is similarity metric which measures the similarity between the quantized data and the unquantized data.

QRPCA Problem Formulation

The relationship between quantization data **Z** and the unquantization

data **Y**=**X**+**T** can be written as

$$\begin{aligned} &-\frac{\Delta}{2} \leq \Re\{\mathbf{Y} - \mathbf{Z}\} \leq \frac{\Delta}{2} \\ &-\frac{\Delta}{2} \leq \Im\{\mathbf{Y} - \mathbf{Z}\} \leq \frac{\Delta}{2} \end{aligned}$$

By considering the unknown noise distortion on the quantized data, we define the similarity metric function D(·,·)

 $D(\mathbf{Z}, \mathbf{X} + \mathbf{T})$

$$= \left\| \rho \left(\left[\Re \{ \mathbf{X} + \mathbf{T} - \mathbf{Z} \} + \frac{\Delta}{2}; \Im \{ \mathbf{X} + \mathbf{T} - \mathbf{Z} \} + \frac{\Delta}{2} \right] \right) \right\|_{F}^{2}$$
$$+ \left\| \rho \left(\left[\Re \{ \mathbf{Z} - \mathbf{X} - \mathbf{T} \} + \frac{\Delta}{2}; \Im \{ \mathbf{Z} - \mathbf{X} - \mathbf{T} \} + \frac{\Delta}{2} \right] \right) \right\|_{F}^{2}$$

where $\rho(\cdot)$ is an element-wise function with $\rho(x) = \max\{-x, 0\}$.

Method

Step1: Accelerated Proximal Gradient (APG) Algorithm for QRPCA Problem

- Recover the low-rank matrix **X** and the sparse matrix **T**.
- □ Step2: Least Square (LS)-based Target Parameter Estimation
 - Estimate the unknown target parameters $\{\mathbf{p}^{(k)}, \mathbf{v}^{(k)}\}_{k=1}^{K}$ from recovered matrix **X**.

Method

A. APG-QRPCA Algorithm

□ Define $h(\mathbf{X}, \mathbf{T}) = \mu \|\mathbf{X}\|_* + \lambda \|\mathbf{T}\|_1$ and $g(\mathbf{X}, \mathbf{T}) = \frac{1}{2}D(\mathbf{Z}, \mathbf{X} + \mathbf{T})$, where $h(\mathbf{X}, \mathbf{T})$ is convex and $g(\mathbf{X}, \mathbf{T})$ is differentiable.

The QPRCA problem can be rewritten as

 $S_{\varepsilon}(x)$ $\min_{\mathbf{X},\mathbf{T}} h(\mathbf{X},\mathbf{T}) + g(\mathbf{X},\mathbf{T})$ Iteratively calculate Calculate momentum $\overline{\mathbf{X}}_{l} = \mathbf{X}_{l} + \frac{\zeta_{l-1}}{\zeta_{l}} (\mathbf{X}_{l} - \mathbf{X}_{l-1}), \overline{\mathbf{T}}_{l} = \mathbf{T}_{l} + \frac{\zeta_{l-1}}{\zeta_{l}} (\mathbf{T}_{l} - \mathbf{T}_{l-1})$ $-\varepsilon$ Gradient descent $\mathbf{X}_{p} = \overline{\mathbf{X}}_{l} - \delta \nabla_{\mathbf{X}} g(\overline{\mathbf{X}}_{l}, \overline{\mathbf{T}}_{l}), \mathbf{T}_{p} = \overline{\mathbf{T}}_{l} - \delta \nabla_{\mathbf{T}} g(\overline{\mathbf{X}}_{l}, \overline{\mathbf{T}}_{l})$ Proximal map $\mathbf{X}_{l+1} = \arg\min_{\mathbf{x}} \left\{ \mu \|\mathbf{X}\|_* + \frac{1}{2\delta} \|\mathbf{X} - \mathbf{X}_p\|_F^2 \right\} = \mathbf{U}_p \mathcal{S}_{\mu\delta}(\mathbf{\Sigma}_p) \mathbf{V}_p^T,$ $\mathbf{T}_{l+1} = \arg\min_{\mathbf{T}} \left\{ \lambda \|\mathbf{T}\|_{1} + \frac{1}{2\delta} \|\mathbf{T} - \mathbf{T}_{p}\|_{F}^{2} \right\} = \mathcal{S}_{\lambda\delta}(\mathbf{T}_{p})$

ε

х

Method

B. LS-based Target Parameter Estimation

 \square $M_t \times M_r$ TIM matrixes can be recovered at the fusion center.

A sequential LS method introduced to sequentially estimate the position and velocity parameters.

• $\boldsymbol{\theta}_p = \{\mathbf{p}^{(k)}\}_{k=1}^{K} \text{ and } \boldsymbol{\theta}_v = \{\mathbf{v}^{(k)}\}_{k=1}^{K} \text{ are implicitly determined by the matrices } \mathbf{A}_{mn} \text{ and } \mathbf{B}_{mn}$

Numerical Results

- □ M_t = 3 transmit antennas, M_r = 10 receive antennas, uniformly distributed on the concentric circles with radius 5km and 3km, respectively.
- □ The reference carrier frequency parameters $f_0 = 5$ GHz and the frequency increment $\Delta f = 50$ MHz.
- One CPI consists of Q = 128 pulses with $T_{PRI} = 0.5$ ms and $T_p = 6.4 \mu s$.
- \Box The transmitters emit Hadamard sequences with length of N = 64.
- □ 1% symbol error rate is assumed to lead sparse data transmission error matrix.
- One target is located at $\mathbf{p}^{(1)} = [1100, 1100]^T \text{ m with } \mathbf{v}^{(1)} = [10, 10]^T \text{ m/s.}$

Numerical Results

It is shown that it is possible to simultaneously recover the matrices X_{mn} and T_{mn} from the low-bit quantized data.
When the SNR is less than 20dB, the performance of 6-bit quantization is very close to that without quantization, proving the effectiveness of low-bit quantization.

Numerical Results

It can be seen that the position and velocity of the target can be accurately estimated by the LS-based method, using 4-bit quantization at SNR=20dB.

Conclusions

LiQuiD MIMO radar

- Propose a low-bit quantized distributed MIMO radar system;
- Formulate a QRPCA problem to recover the infinite-precision target information matrix and the data transmission errors simultaneously;
- Demonstrate the feasibility of implementing a low-bit quantized distributed MIMO radar system.
- **Given Setup** Future work
 - Derive the performance bound of the proposed LiQuiD-MIMO radar.

