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ABSTRACT

Neural fields, also known as coordinate-based representa-
tions, are an emerging signal representation framework. This
approach has also been used to represent audio signals, but
the generated audio often contains noise. To reduce noise
and improve representation quality, we propose using wave-
form encoding in the neural field. Instead of yielding real
numbers for each temporal coordinate, this involves using
discrete integers as outputs, with waveform-encoded integers
as target classes, and treating the representation problem as a
classification task rather than a regression problem. The ex-
perimental results show that waveform encoding can improve
the audio quality of neural fields across a variety of audio
datasets.

Index Terms— neural fields, implicit neural representa-
tion, audio representations, waveform coding

1. INTRODUCTION

The temporal resolution of audio signals created by neural
networks is often fixed during training and testing. However,
neural fields, also referred to as coordinate-based represen-
tations, enable the generation of signals at any resolution by
inserting corresponding continuous coordinates during infer-
ence without requiring additional training. Not only that, neu-
ral fields have demonstrated their ability to accurately repre-
sent arbitrary signals with fine details and have been success-
fully used to represent various types of signals such as audio,
image, and video signals [1, 2]. Also, it is widely used for
neural rendering, which aims to represent the whole 3D or
even 4D scene [1, 3].

This neural representation scheme is still in its early
stages in the audio domain. More specifically, neural fields
have just started being used for a variety of audio-related
tasks, including audio signal representation [2], super resolu-
tion [4], and audio synthesis [5]. However, noise in the audio
signals produced by neural fields is a common problem, and
there are currently only a few studies on how to improve the
quality of the audio signals produced by neural fields.

We propose to utilize waveform encoding in the neural
field to reduce noise and represent high-quality audio signals.
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Fig. 1. Overall illustration of our proposed method. Ours
solves the audio signal representation task using classification
instead of regression.

Noise, which is often perceptually unpleasant, is a persistent
issue for neural fields. Waveform encoding, which converts
continuous analog signals to digital signals, is widely used in
telecommunication systems to prevent signal quality from be-
ing degraded by noise during transmission. Since waveforms
can be efficiently quantized with low bit through waveform
encoding, we used the softmax distribution as the output of
neural fields. Fig 1 illustrates the overall structure of the pro-
posed method. As a result, we were able to train the neural
fields model to represent higher-quality audio signals than the
baseline models.

2. RELATED WORKS

2.1. Neural fields

Neural fields, also known as implicit neural representation,
is one of the neural network-based signal representation
schemes. It uses neural networks to model a function of
coordinates, f(z) = y, mapping coordinates to their cor-
responding values. To model the function of coordinates,
neural fields frequently employ variants of simple multilayer
perceptrons (MLPs) with non-linearity activation. Neural
fields sample values for each coordinate, which frequently re-
quires the use of complex and heavy networks that consume
a lot of computing power. However, naively implementing
and training neural networks to map coordinates to values
fails to capture high-frequency details due to extremely low-
dimensional inputs (for example, one for audio and two for
an image) and spectral biases [2, 6]. Numerous lines of



study have been proposed to address this problem, including
positional encoding [6, 1, 7, 8], internal activation function
and parameter initialization [2], to name a few. NeRF [1]
proposed to use positional encoding [9], which was first
proposed in the natural language understanding, for mapping
coordinates into a much higher dimensional space. This made
it possible for neural fields to approximate a higher frequency
function. Tancik et al. [6] propose to use the fourier feature
mapping to overcome the spectral bias of MLPs that prevent
learning high-frequency details. On the other hand, other
lines of research, such as SIREN [2], that do not preprocess
nor map low dimensional coordinates into a much higher di-
mensional space, address this problem by designing the inner
structure of neural networks, such as weight initialization
and activation function. More specifically, SIREN propose to
use periodic activation function with calculated initialization
policy. The widespread use of neural fields in various types
of signals is a result of these advancements.

In audio domain, SIREN [2] has shown that neural fields
can accurately express an arbitrary audio signal with fine de-
tails. Zuiderveld et al. [4] demonstrated the utility of this
representation scheme in the audio synthesis task by incor-
porating conditioning methods and employing neural fields
as an auto-decoder [10]. LISA [5] utilizes neural fields to
provide arbitrary scale super-resolution. They employ an en-
coder and a decoder to extract local latent codes from audio
signal chunks and, respectively, predict signal value from co-
ordinates.

2.2. Waveform Coding

Waveform encoding has been proposed for low-bit audio
signal transmission while maintaining high perceptual audio
quality. Simple linear quantization of audio signals frequently
results in undesirable noise. Additionally, due to a number
of unexpected or expected factors, analog signal transmission
is frequently accompanied by unwanted noise. To allevi-
ate the effects of noise, waveform encoding consists of two
steps. Waveform encoding initially applies a non-linear func-
tion, also known as companding. After that, these converted
signals are quantized into finite segments. Through these
processes, waveform encoding translates continuous analog
audio signals into finite, discrete digital signals [11].

In the early stages of audio synthesis using deep neu-
ral networks, WaveNet [12] was the first to employ wave-
form encoding, specifically p-law companding. They gener-
ate new audio by auto-regressively predicting quantized audio
samples based on the softmax distribution of the subsequent
timestamp. But these are limited to non-neural field-methods
and yet to be applied in neural fields.

3. METHOD

We propose using finite discrete integers as outputs rather
than generating a real number for each temporal coordinate.
To convert continuous signal values as quantized integers, j-
law and A-law encoding were used. Each quantized output is
designated to a class, and neural networks are trained to pre-
dict the probability of each class rather than the scaler value.
In short, we propose to change the neural field-based audio
representation from a regression task to a classification task.
Even when the data is implicitly continuous, a softmax dis-
tribution usually performs well as it is more flexible and can
easily model arbitrary distributions [13, 12]. Therefore, we
used cross entropy loss to train our proposed method.

3.1. Encoding

There are two standard companding methods; p-law com-
panding and A-law companding. p-law companding is de-
fined as follows,
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In denotes natural logarithm, and A is a constant.

We employ waveform encoding to discretize and catego-
rize continuous values. For p-law encoding, the quantization
equation is as follows,
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C(+) denotes a companding function. In the case of p-law en-
coding, itis M (-) in Eq. 1, and in the case of A-law encoding,
itis A(+) in Eq. 2. This function maps an arbitrary continuous
value between -1 and 1 to an integer between 0 to v. Inte-
gers will be used as class labels respectively in our proposed
method.

3.2. Decoding

The integer with the highest prediction probability is chosen
in the inference phase and converted back into a real value
using the following equation:
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Fig. 2. The target log-magnitude spectrogram and three gen-
erated spectrograms. Using continuous values as outputs (re-
gression) results in less accurate high-frequency components,
compared to using discrete values as outputs (classifi.).

€ is the quantized value obtained from Eq. 3, and v is the
same v in Eq. 3. Because Eq. 4 only converts integers to real
numbers between -1 and 1, it should be possible to decode
quantized integers into real numbers depending on which en-
coding function had been used.

We used the official inverse function of each waveform
companding function for decoding [11]. The inverse of u-law
companding (Eq. 1) is as follows,
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Similarly, the inverse of A-law companding (Eq. 2) is as fol-
lows,
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3.3. Objective Function

We used the mean square error (MSE) loss as the objective
function on the regression task, in which neural fields gener-
ate continuous audio signal values. Because neural network
outputs are probabilities of classes, or quantized integers in
our case, we used cross entropy for the proposed method.
In other words, we optimized neural fields by classification
rather than regression.

4. EXPERIMENTS AND RESULTS

We evaluate our proposed method on two main tasks; audio
signal representation and super-resolution. We used three dif-
ferent models to see if the proposed method could be applied
to a range of network structures; SIREN, Fourier neural net-
works (FNN) [6], and lastly, MLP with positional encoding
(PosEnc) [1]. We used VCTK [14] and ESC-50 [15] as train
and evaluation datasets.

Data | Outputs | Model | PESQT | SNRT | LSD|
SIREN 2299 | 20.154 | 0.299

Floats FNN 1.342 | 14.785 | 0.308

Pos Enc. 1.701 17.148 | 0.669

SIREN 2.948 | 21.042 | 0.981

VCTK | p-Law FNN 3.893 | 36.585 | 0.084
Pos Enc. | 2.434 | 20.926 | 0.505

SIREN 2.921 | 20.627 | 1.032

A-Law FNN 3.937 | 36.857 | 0.080

Pos Enc. 2416 | 20.737 | 0.517

SIREN 3.253 19.331 | 0.399

Floats FNN 2.534 | 15.099 | 0.444
Pos Enc. 2.569 13.381 | 1.6342

SIREN 4.074 | 29.854 | 0.329

ESC50 | p-Law FNN 3.579 | 19.886 | 0.789
Pos Enc. 3.049 | 15.812 | 2.827

SIREN 4.089 | 29.982 | 0.329

A-Law FNN 3.566 | 19.967 | 0.798

Pos Enc. 3.039 15499 | 2.741

Table 1. Performance in the audio signal representation task.
Floats in the “Outputs” column indicates neural fields that
have been trained with regression loss.

4.1. Datasets

To validate the proposed method, we used the voice bank
corpus (VCTK version 0.92) [14] as a human speech dataset
and the environmental sound classification dataset (ESC-
50) [15] as an environmental sound dataset. The VCTK
corpus was recorded by 110 English speakers with various
accents and has a sampling rate of 48 kHz. We used audio
samples recorded with mic I in the official test dataset. The
recordings of the speakers p280 and p315 were excluded due
to technical issues. The ESC-50 dataset contains 2,000 audio
streams with a 5-second length containing 50 classes for en-
vironmental acoustic events, each recorded at 44.1 kHz. We
used all the audio samples from ESC-50 for evaluation.

4.2. Experimental Setup

For experiments, we used a 4-layer MLP with a width size of
512 as a backbone model. We use the same network archi-
tecture for SIREN, FNN, and PosEnc since the only differ-
ences among these methods are the initialization policy and
inner activation functions, as well as how coordinates are pro-
cessed. For SIREN, we set wg and w to 3,000 and 30 respec-
tively, following the original paper. In the case of FNN, we
set the o and scale to 8,000 and 1,000, respectively. The num-
ber of frequencies was automatically set so that the maximum
frequency of positional encoding does not exceed the Nyquist
frequency of the target audio signal. More precisely, the num-
ber of frequencies was set to |logz(n_samples/2)]|, where
|-] is the floor function and n_samples is the total number
of samples in the target audio sample. Using the Adam op-



timizer, we train each method for 2,000 iterations, decaying
the learning rate by 0.95 every 100 iterations.

We used three audio evaluation metrics to evaluate the
performance of each method: perceptual evaluation of speech
quality (PESQ) [16], signal-to-noise ratio (SNR), and log-
spectral distance (LSD) [17]. PESQ is an optimized evalua-
tion method for evaluating the quality of human voices. LSD,
a commonly used metric for audio super-resolution or quan-
tization, measures the distance between two audio samples in
the frequency domain.

4.3. Audio Signal Representation

To evaluate the effect of output types on the performance of
audio signal representation, we trained several neural fields
(SIREN, FNN, and PosEnc) using different outputs. The
sampling rate of every audio sample was set to 16 kHz.
As shown in the Table 1, introducing waveform encoding
enhances audio quality. In VCTK, waveform encoding im-
proves the performance by a significant margin regardless of
the neural architecture. Additionally, in terms of all three
criteria, FNNs with A-law companding perform the best in
representing the VCTK dataset (PESQ from 1.342 to 3.937,
SNR from 14.785 to 36.857, and LSD from 0.308 to 0.080
in the case of FNN). Overall, pu-law and A-law encodings
show similar representation performance. Even for the ESC-
50 dataset, waveform-encoding models produce outputs that
are significantly more qualitatively enhanced as measured
in SNR and PESQ. Since the quantization levels chosen for
waveform encoding are highly adapted to low sampling rates,
it is inevitable that high-frequency components will be diffi-
cult to represent, leading to high LSD. The FNN and PosEnc
models only differ in the input preprocessing methods they
use, which demonstrates that the model’s capacity to rep-
resent high frequency components has a significant impact
on it regardless of whether waveform encoding is employed.
According to the overall results, it can be seen that neural
field models represent audio signals with higher quality when
waveform encoding is applied.

In addition, we qualitatively compared regression and
classification-based methods. Fig. 2 shows the log magnitude
spectrogram of each method and the ground truth. We used
PosEnc and ran it on an audio sample from VCTK. Although
the classification-based method uses quantized outputs, as
shown in the figure, the outputs produce a pattern that is
similar to the ground truth at both low and high frequencies.
Additionally, using waveform encoding and switching from
a regression task to a classification task demonstrates a far
better capacity to suppress signals when they should be, as
seen in the right part of each spectrogram.

4.4. Audio Super-resolution

In this experiment, we evaluate the effect of waveform encod-
ing on neural field on the audio super-resolution. We trained

Data | Outputs | Model | PESQ1 | SNRT | LSD]

SIREN 2.296 | 16.532 | 0.516

Floats FNN 1.104 2.598 | 2.938

Pos Enc. 1.726 | 14.857 | 0.885

SIREN 2.577 | 13.926 | 1.403

VCTK | p-Law FNN 3.199 | 15.732 | 0.584
Pos Enc. 1.583 | 11.062 | 1.966

SIREN 2.542 | 13.774 | 1.462

A-Law FNN 3.248 | 15.739 | 0.579

Pos Enc. 2.213 13.987 | 1.117

SIREN 3.226 | 12.653 | 0.681

Floats FNN 2.171 6.247 | 1.192

Pos Enc. 2.564 | 10.844 | 1.717

SIREN 3.797 | 10.444 | 1.753

ESC50 | p-Law FNN 3.967 | 10.831 | 1.658
Pos Enc. | 2.962 8211 | 3.628

SIREN 3754 | 10.332 | 1.768

A-Law FNN 3.949 | 10.837 | 1.658

Pos Enc. 2.972 8.234 | 3.648

Table 2. Performance in the audio super resolution task (16
kHz — 44.1 kHz). Floats in the “Outputs” column indicates
neural fields that have been trained with regression loss.

each neural network at the low sampling rate of 16 kHz and
tested them at the high sampling rate of 44.1 kHz. In the same
way as the audio presentation experiment, all experimental
conditions—aside from sampling rate—were carried out. As
demonstrated in Table 2, introducing waveform encoding im-
proves the value of PESQ in both datasets. When compared to
Table 1, it can be seen that all models have lower scores for all
assessment methods across all datasets. These results imply
that the neural field models render a high-frequency compo-
nent prediction error when predicting missing high-resolution
components. Plus, PESQ has a stronger correlation to percep-
tual quality than LSD and SNR [18, 7]. Therefore, it can be
seen that the neural field that employs waveform encoding is
able to predict the super-resolution component of the audio
signal in a more perceptually friendly manner.

5. CONCLUSION

In this paper, we propose using discrete outputs instead of
continuous values for representing audio signals with neu-
ral field models. With the aid of waveform encoding, au-
dio signals can be expressed using a limited set of integers,
which can be regarded as a class. To this end, waveform
encoding allows neural field models to be trained in a clas-
sification approach. It enhances the capacity of neural field
models to represent high-quality audio signals across audio
datasets, regardless of neural architecture. Furthermore, it
has been demonstrated through audio super-resolution exper-
iments that the distribution of continuous data can still be eas-
ily modeled even with softmax distributions.
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