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Abstract

In the recent few years, lossless compressors based on deep learning emerged as a new re-
search direction. However, existing DL compressors focus mostly on compression ratio at
the expense of compression speed (typically 10-1000 times slower than popular compres-
sors, operating at the KB/s level), rendering them impractical to be deployed in industrial
settings. To address the throughput issue of network inference, we propose to utilize model
compression in DL-based lossless data compression. Our approach originates from the
sparse learning framework to flexibly balance the model complexity and the compression
ratio. Through systematic numerical experiments, we found that compressed models with
only tens of thousands of parameters can still retain competitive compression ratios com-
paring with the original large models which are typically 100 times larger. The proposed
scheme reveals novel properties concerning deep compression models and data—logarithmic
relations between the model size and compressed data size for general mixed data, and a
turning point indicating minimum representation size for relatively formatted data.

Introduction

Algorithms for data compression have been around for almost as long as information
theory, initially focusing on entropy-coding (Shannon codes, Huffman codes, arith-
metic coding) and later advancing into more general statistics-based approaches the
most notable being the LZ series. The first time when machine learning met com-
pression was in 1996 [1] where a data-driven compression scheme was established.
Given the high flexibility in artificial NN, the DL-based compressor was improved by
exploring the network architecture [2]. Those NNs were initially proposed as a general
replacement of various models in the context mixing class of traditional compressors
such as PAQ1 and CMIX2. However, the game changed as extensive supporting plat-
forms and hardware emerged in the last decade. DeepZip [3] as well as its adaptive
version DZip [4] adapted long short-term memory (LSTM) and gated recurrent units
(GRU) as their building blocks of a deep compressor. Partly taking the fruit from
natural language processing, NNCP [5] generalized the SOTA LSTM and attention-
based autoregressive network, whose third version3 achieved a record 0.882 bits per
character in compressing the enwik9 benchmark, the best result ever reached.

1http://mattmahoney.net/dc/zpaq.html
2http://www.byronknoll.com/cmix.html
3http://mattmahoney.net/dc/text.html#1102



On the other hand, deep generative models as a big breakthrough of the 21st
century in DL, also provide a systematic methodology for data compression. Volume-
preserving flow model [6, 7] and variational autoencoder [8] stood out and became
two successful lossless compression approaches, respectively based on injective and
stochastic mappings between real and latent spaces. Such a connection extends how
people think of compression, although their compression rates are reportedly poorer
than autoregressive models.

Since most deep autoregressive compressors originate from AI tasks that empha-
size model accuracy, previous work focuses mostly on adopting such models to achieve
high compression ratio. However, they come at the cost of slowing down the compres-
sion throughput. For instance, the NNCP compressor reaches an extreme compression
capability but can only process data at the level of KB/s, making them impractical
for daily use. In fact, large-scale deployment relies critically on a compressor being
able to achieve a balance between its throughput and compression rate, a tradeoff
often underexplored in the existing literature of AI-based data compression. To fill
in this gap, lightweight models at ∼100MB/s inference speed and compatible GPU-
based entropy encoders are indispensible for a practical DL-based compressor, both
of which are un-derexplored in the existing literature. To address the former, we
develop in this paper a systematic balancing method derived from network reduction
technology, which is in principle applicable to any type of data.

Our main contributions in this paper can be summarized as follows. First, we
propose model compression as a way to achieve efficient data compression. A com-
plete pretraining scheme Under the lasso framework is developed to gain the relation
between model size and compressed data size. We solve pruning-related dynamical
issues via theoretical analyses and experiments, to achieve homogeneous structure
reduction. The results show that DL-based compressors can operate with refined
structures that lead to practical inference speed.

Lossless Compression with Neural Networkss

Consider a sequence of data x = (x1, x2, ..., xN) of length N where xi ∈ S of car-
dinality |S| ≤ 2K (typically K = 8 meaning that each original symbol occupies a
single byte). The goal for lossless compression is to find an invertible transforma-
tion F : x → z = (z1, . . . , zM) with zi ∈ {0, 1}. The compression ratio is com-
puted as ρ(x, z) = NK

M
, with the larger the value the more compressed the original

data has become; an alternative quantification is bits per character (bpc), defined as
bpc(x, z) = 8M

NK
.

Neural Network Predictor

The autoregressive approach treats the joint probability as the product of conditional
probabilities of each symbol over all previous symbols

Pr (x) =
N∏
i=1

Pri (xi) =
N∏
i=1

Pr (xi|x1...xi−1) (1)



where the i = 1 term should be understood as the prior likelihood of a string starting
with x1. A typical autoregressive compressor requires the predictor to output all N
distributions Pri (·) with i = 1, ..., N each represented by |S| positive real numbers
that sum up to 1.

As long as all distributions Pri (·) and the true sequence x are known to the
entropy encoder, it can encode x into a bitstream z, with the minimum code length

L = −
N∑
i=1

log Pri (xi) . (2)

Machine learning parametrizes the above conditional probability with learnable
coefficients θ so that Pr(·|x1...xi−1,θ) can be easily computed. Minimizing the target
sequence code length coincides with the training objective

θ = argmin
θ∈H

L(θ) (3)

where H is the hypothesis class of θ.
Many predictors such as feedforward NNs and those in PAQ and CMIX effectively

truncate the input of Pri (·) to previous k symbols, so that

Pr (x) =
N∏
i=1

Pri (xi) ≈
N∏
i=1

Pr
(
xi|xmax(1,i−k)...xi−1

)
(4)

and k serves as an algorithmic tunable parameter that indicates the correlation length
of the data.

Entropy Encoder

Entropy encoders represent x by a bitstream with the information of Pri (·). The
popular Huffman coding [9] encodes symbols separately with code length given by
equation 2 and at most one redundant bit for each symbol. To circumvent the ad-
ditional bit, the arithmetic code (AC) expresses x with an interval of length Pr (x)
within (0, 1) and the overall extra-bit length is a constant. Nevertheless, adaptive
quantization and updating the segment in arithmetic code is still time-consuming
for compressors of daily use. In 2009, the asymmetric numeral system (ANS) was
proposed [10] to achieve both the optimal bit length and fast speed so long as the
symbol probabilities are static. Although entropy encoders have achieved through-
puts much faster than our final model inference speed, they mostly operate on CPU
while our NN model requires special processing units for acceptable speeds which
in the experiments is an NVIDIA V100 training card. A fully GPU-based entropy
encoder compatible with our pruned NN models is beyond the scope of this paper,
and we leave this demand in the future work and use a CPU version for end-to-end
compression and decompression tests.

Methods

Despite being able to reach high compression ratios, the obvious drawback of using
neural networks as the predictor is that artificial neural networks typically contain



Figure 1: Three-step model reduction process with the outcome models at the bottom. We
continue training a model M0 with an increasing lasso term, and trim all suppressed nodes
in the meanwhile. Then the trimmed networks are pushed to retrain without the presence
of the lasso term.

way too many parameters, causing significantly more computation flops than prac-
tically used algorithms. Model compression technology was proposed to reduce the
memory usage of usually giant NN models, in order to accommodate limited storage,
communication bandwidth, computation and power, especially in portable devices.

Approaches for model compression approaches include weight sharing, pruning,
quantization and distillation. We choose structured model pruning as the first trial
toward a practical deep compressor because it depends less on the hardware architec-
ture. People have proposed a variety of model pruning frameworks [11] starting with
greedy deletions, and a more systematic way is by penalizing non-zero weights with
additional regularization terms in loss function such as L1 and L2 norms [12]. Besides
punishing individual edges, structured pruning imposes penalties for network nodes,
filters or layers, making the outcome network faster without specialized platform
support.

Lasso for DL-based Compression

In this work we adopt the lasso method for the scenario of DL-based compression
as it is known as the standard pruning scheme [13–15] for both structured and non-
structured deletion. The ordinary lasso introduces L1 regularization while group
lasso imposes additional terms that are proportional to the L2 norm (square root of
L2 regularization) of parameters in each group

L = L+
∑
g∈G

αg

√∑
w∈g

w2, (5)

where L comes from equation 2 and G denotes the set of lasso groups. Each group in
G defines a NN structure whose removal is believed to bring significant acceleration.
In this work we perform only node pruning and figure 2 illustrates typical lasso groups
for our tested NN structure. The lasso L2 form ensures its continuity as well as non-
zero gradient around the point where w = 0,∀w ∈ g given a group g, so it leads to a
local minimum at zero.



Pruning after Pretraining

Three DL-based compression schemes exist in the literature with varied model gen-
eralizability [4]. In the static way, a model is trained over samples of one data type
(e.g., enwik8), and is applicable only to compressing this data type (e.g., all English
text) but the model size is regarded as part of the algorithm. The semi-adaptive way
trains the model exactly on the data to be compressed, and the model must be saved
in the compressed stream. The third one is adaptive compression in which we scan
the sequence and the NN model updates at the same time of compression. We choose
the static approach to demonstrate our pruning method though it also works for the
semi-adaptive way.

As for the pruning procedure, people typically perform it after the training con-
verges. Other schemes were also proposed such as periodic pruning [16]. We first
optimize under the cross-entropy L and then increment lasso terms after each epoch.
Any node with a noise level less than the predetermined threshold will be removed
from the network, and we will obtain a series of pruned models of decreasing sizes.
Finally, all the pruned models have to be retrained using the same data as training.
The whole procedure is given in figure .

Lasso Dynamics

Weight Grouping

Figure 2 illustrates lasso groups in our predicting NN. Choosing either the left-side or
right-side weights is usually satisfying as one latent node’s lasso group. However, due
to the increasing popularity of rectified linear units ReLU(x) = max(x, 0), we propose
double-sided lasso groups for pruning latent nodes. Let p be a latent node with bias
b, wi be incoming weights, and wo be outgoing weights. The following equation holds
for any node with ReLU activation

ReLU
(
αw⊤

i · v + b
)
= αReLU

(
w⊤

i · v + b/α
)

(6)

where elements of v are outputs of the last latent layer. Thus for the total loss
function

L (αwi, b,wo) = L (wi, b/α, αwo) . (7)

Such invariance also approximately applies to other activation functions around linear
regions defined by equation 6, which means that penalizing one side of edges can be
compensated by enhence the other side. Including both sides of weights in the node’s
lasso group can suppress the above invariant transform that escapes node penalties.
In our experiments, we introduce two weight groups for one latent node, the left-side
weights g

(l)
latent and the right-side weights g

(r)
latent, as illustated in figure 2.

Lasso Prefactor

We assign the same prefactor αg to identical structures, such as nodes of the same
latent layer, while the ratio between different structures remains flexible. The simplest
choice is to use a constant prefactor

αg = α. (8)



Figure 2: Examples of lasso groups in a deep neural network consisting of one embedding
layer and one latent layer. Three types of lasso groups are colored corresponding to removing
an input node, an embedding dimension and a latent node respectively. Inset : left group
and right group of an intermediate latent node.

Published works [14, 15] also propose prefactors that are proportional to group car-
dinalities

αg = α|g| (9)

so that the magnitude of the derivative with respect to wi ∈ g remains unchanged
with varied size of g.

As the training dynamics on practical NNs are difficult to analyze, the preference
of one prefactor convention is mostly empirical. Both options converge to the min-
imum network whereas under the constant prefactor all structures shrink in a more
simultaneous and stable manner. Thus we choose the constant convention for later
experimental settings.

Pruning Threshold

The training of a NN usually converges to a bounded motion around the minimum
for the stochastic nature of mini-batch dynamics and optimization finite step length.
Hence thresholds are needed as indicators for zero-weight groups. Such thresholds
should be greater than, but of the same order of the noise level of group weights around
the minimum. We simulate the optimizing process of the lasso term alone without
the real loss, for the real part becomes negligible with increasing α. We conduct an

experiment of a vector w optimized under the lasso potential α∥w∥2 = α (
∑

w2)
1
2 (w

is treated as a single lasso group), and choose the root mean square of a lasso group

as an indicator of its zero level, i.e., Sg =
√

1
|g|

∑
w∈g w

2.

We find that Sg falls and then fluctuates around zero and its expectation is affected
by the prefactor αg, learning rate γ and the dimension of w. It is straightforward to
obtain analytical results when stochastic gradient descent (SGD) is employed

w(t+ 1) = w(t)− γ∇ (α∥w(t)∥2) =
(
1− αγ

∥w(t)∥2

)
w(t), (10)

which means w(t) is parallel with w(t+1) and ∥w(t+1)∥2 = |∥w(t)∥2 − αγ|. Hence
if ∥w(t)∥2 ≤ αγ, w(t+2) = w(t). It concludes that the noise around the L2 minimum



Figure 3: Expected values of noise magnitude Sg for a free vector w under L2-form potential
and Adam optimizer. Experiments have been repeated and errors are less than the marker
size. (a) is for variable w dimension and (b) is for variable learning rate γ.

under SGD is
E(Sg,SGD) =

αγ

2
√
|g|

. (11)

Other optimizers have more complicated mechanisms so we measure E(Sg) exper-
imentally for the popular Adam optimizer [17] without weight decay. We find that
the potential strength does not affect the fluctuation, and for other factors, figure 3
shows the noise L2-norm expectation for variable learning rates and dimensions. A
good estimate of E(Sg) is

E(Sg,Adam) ≈ 0.5γ. (12)

Numerical Experiments

size |S| gzip DZip description
/ / 19MB/s 85KB/s

enwik8 96M 205 2.92 1.80 English Wikipedia in XML format
text8 96M 27 2.65 1.74 English text extracted from Wikipedia
chr1 238M 5 2.06 1.67 H. Sapiens GRCh38 sequence

c.e.gene 96M 4 2.24 1.82 C. elegans whole genome sequence

qs36 100M 38 3.74 2.94
quality scores (36 bytes per read)

of a human genome sample

qs148 140M 39 2.48 1.54
quality scores (148 bytes per read)

of genome sample NA12878
Mozilla 49M 256 2.98 2.65 tarred executables of Mozilla 1.0

Table 1: Realistic datasets used in experiments. The columns Gzip and DZip record the
resulting bpc using corresponding compressors, with their typical compression throughputs
shown in the second row. DZip’s ratio and speed here are different from the original paper
because static compression strategy and independent test data are employed. chr1 and
c.e.gene are introduced in DZip.

We conduct experiments on realistic datasets. The details of the datasets are listed
in table 1. The seven datasets cover four classes: English texts, genome sequence,



quality score in genome sequencing and mixed data. Quality scores are integer ranging
from 30 to 70 encoded each with a single byte, resembling time series. For each
dataset, 4/5 is used for training and evaluation while the rest is for tests.

As for the NN model, we take a feedforward NN with two fully connected latent
layers each with 512 initial nodes. A final layer fully connected to the second latent
layer is present with nodes equal to |S| and is equipped with a softmax filter to
output Prt (·). The inputs are treated in bytes, and the k−byte sequence xt−k...xt−1

will be taken as the input k nodes. A learnable embedding layer is inserted between
input nodes and the first latent layer mapping a byte onto a Demb-dimensional vector.
Throughout our numerical tests, k = 16 is fixed, because it exhibits more complicated
pruning dynamics if we apply lasso terms to input nodes.

Figure 4: Trade-off curves between the model complexity and the compression rates. Each
panel represents one dataset. Insets are the same curves on logarithmic scales.

We then perform the sparsity learning on the training data of the above datasets.
8192 batches are run in parallel on the NVIDIA Tesla V100 training card and PyTorch
platform. When the Adam optimizer is employed with a learning rate γ = 0.002, 32
epochs are adequate for all data types to converge without lasso terms. Then, group
lasso losses are introduced by setting αg = 5× 10−7t2 where t is the epoch since the
lasso losses are present. Each latent node is attached with two lasso groups involving
incoming or outgoing edges, and the input-node pruning is turned off. Any node
whose root mean square falls below 10−3 is removed from the network. A series of
sparse models are produced as α increases. We retrain all pruned NNs with only
the cross-entropy loss for a maximum of 10 epochs, then evaluate for their final
performance on the test sets.

The initial models before pruning have typically 5 × 105 parameters and reach



∼5MB/s inference speed on GPU. Their compression ratios are comparable with
DZip in genomic datasets, and are lower than DZip for mixed texts such as enwik8,
text8 and Mozilla. The results are expected because DZip utilizes combined recurrent
units and linear regression, while we choose only linear layers for the pruning to work.

Figure 4 shows the sparsity-quality tradeoff. Compressed file sizes rise as model
sizes shrink as expected, except for the large-model end (upper-left corners) which can
be explained by better generalizability introduced by the lasso regularization. NNs of
∼ 106 parameters were proposed for autoregressive DL-based compressors [3], while
we find that much smaller NNs are adequate without losing compression performance.
For English texts, 105-parameter NNs that take only 0.4 MBs storage still outperform
traditional popular compressors. For genome sequence chr1, a network as small as
104 parameters is only 3% worse than one with 3× 105 parameters.

More interesting results are present in the curves for qs36 and qs148 that both
take a characteristic L-shape. A turning point is manifest around Np = 103 ∼ 104,
and above this point the model size drops vertically without losing compression qual-
ity. What is special about datasets qs36 and qs148 is that they are actually one-
dimensional integer values featuring limited patterns, so there exist countable rules
to determine the distribution of the next value. Our model compression reveals the
minimum NN-representation of such rules though efforts are still needed to bridge
the gap between NN-representations and explicit formulas.

The trends in texts and mixed data are monotonic, and any reduction in the model
size will result in a lower compression rate. Their curves in logarithmic scale exhibit
apparent linearity, which implies the following relation

M ≈ −b logQ+ c (13)

where Q is the model size, M is the compressed file size and (b, c) is a pair of positive
constants. People have established universal approximation theorems for various NNs
[18, 19] which states that large enough NN models can approximate any continuous
function, while the loss in accuracy with limited NN size remains unanswered.

The nature of structural pruning makes the results easy for network accelera-
tion. The inference speed of our tests for a NN of 4 × 104 parameters can achieve
∼50 MB/s on NVIDIA Tesla V100 if batch parallelization is fully exploited, much
faster than the speed reported in DeepZip [3] which is of KB/s level. The end-to-end
compression speed is of the same magnitude while decompression speed drops signifi-
cantly, supposedly due to heavy CPU-GPU communication during decompression in
our implementation.

Conclusions

To make DL-based compressors practical, we propose to utilize sparse learning to
compress a trained NN model which leads to a condensed network model that runs
orders of magnitude faster than the original prediction model. The proposed frame-
work enables to flexibly balance the compression ratio and throughput through tuning
sparsity parameters. For various data types including text, genomes and Mozilla, the
experimental results exhibit a minimum model size of only thousands of parameters,



with the same representability as large NNs; for mixed data, an interesting logarithmic
relation between model and compressed data sizes is evident. These findings indicate
a promising path to develop small-sized neural networks for lossless compression.
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