

On Language Model Integration for RNN Transducer based Speech Recognition

Wei Zhou, Zuoyun Zheng, Ralf Schlüter, Hermann Ney zhou@cs.rwth-aachen.de ICASSP 2022

1. Introduction

- 2. RNN-Transducer and Internal Language Model
- 3. Experiments
- 4. Conclusion

End-to-End (E2E) Speech Recognition

• great simplicity and state-of-the-art performance

- popular E2E approaches
 - connectionist temporal classification (CTC) [Graves & Fernández⁺ 06]
 - recurrent neural network transducer (**RNN-T**) [Graves 12]
 - attention-based encoder-decoder models [Bahdanau & Chorowski⁺ 16, Chan & Jaitly⁺ 16]
- models only trained on paired audio-transcriptions

External Language Model (LM)

- much larger amount of text data
- possibly better-matched domain
- \rightarrow further boost the performance of E2E speech recognition

Proper LM Integration ?

Previously,

- shallow fusion (SF) [Gulcehre & Firat⁺ 15a]: simple log-linear model combination
 - widely-used LM integration approach for E2E models
- other sophisticated approaches
 - e.g. deep fusion [Gülçehre & Firat⁺ 15b], cold fusion [Sriram & Jun⁺ 18]
 - higher complexity but not better than SF

Recently, Internal Language Model (ILM)

- \bullet RNN-T and attention models
 - context dependency directly included in the posterior distribution
 - implicitly learned sequence prior restricted to the audio transcription only
- strong mismatch with the external LM
- \rightarrow limit the performance of LM integration such as simple SF

3 Major Categories to handle ILM

• **ILM suppression**: suppress ILM in E2E model training

- limiting context/model size [Zeineldeen & Glushko⁺ 21]
- introducing an external LM at early stage [Michel & Schlüter⁺ 20]

 ILM correction: estimate and correct ILM from the posterior in decoding

 various estimation methods [McDermott & Sak⁺ 19, Variani & Rybach⁺ 20, Meng & Parthasarathy⁺ 21, Zeyer & Merboldt⁺ 21, Zeineldeen & Glushko⁺ 21]
 fits inte a Payesian interpretation

- fits into a Bayesian interpretation
- **ILM adaptation**: adapt ILM on the same text data used by the external LM
 - train E2E models using text to speech

[Deng & Zhao⁺ 21, Kurata & Saon⁺ 21, Rossenbach & Zeineldeen⁺ 21]

- directly update partial model on text data [Pylkkönen & Ukkonen⁺ 21, Meng & Gaur⁺ 21]

- ILM suppression
 - complexity: model/training modification
 - performs similarly well as ILM correction [Zeineldeen & Glushko⁺ 21]
- ILM adaptation
 - even higher complexity
 - usually aim at restricted application: no external LM
 - with external LM: ILM correction still needed [Deng & Zhao⁺ 21]

• ILM correction

- the most simple and effective LM integration approach
- also a better mathematical justification
- \rightarrow major focus of this work: RNN-T

RNN-T Recap

• sequence posterior

$$egin{aligned} P_{\mathsf{RNNT}}ig(a_1^S|Xig) &= \sum_{y_1^{U=T+S}:\mathcal{B}^{-1}(a_1^S)} P_{\mathsf{RNNT}}ig(y_1^U|h_1^Tig) \ &= \sum_{y_1^{U}:\mathcal{B}^{-1}(a_1^S)} \prod_{u=1}^{U=T+S} P_{\mathsf{RNNT}}ig(y_u|\mathcal{B}(y_1^{u-1}),h_1^Tig) \end{aligned}$$

- a_1^S : output (sub)word sequence with $a \in V$
- X: input acoustic feature sequence
- $-h_1^T = f^{enc}(X)$: encoder output

- y_1^U : blank ϵ -augmented alignment sequence - unique mapping $\mathcal{B}(y_1^U) = a_1^S$: remove all ϵ

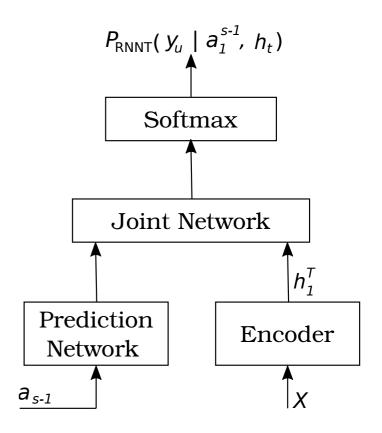
RNN-T Recap cont.

- neural network (NN): parameters θ_{RNNT}
 - encoder: *f*^{enc} joint network: *J*
 - prediction network: f^{pred}
- lattice representation of RNN-T topology - y_1^{u-1} : a path reaching a node (t, s - 1)

$$P_{\text{RNNT}}(y_u | \mathcal{B}(y_1^{u-1}), h_1^T) = P_{\text{RNNT}}(y_u | a_1^{s-1}, h_t)$$

= Softmax $\left[J(f^{\text{pred}}(a_1^{s-1}), f_t^{\text{enc}}(X)) \right]$

-
$$y_1^u$$
: reach $(t + 1, s - 1)$ if $y_u = \epsilon$, or (t, s) otherwise



Maximum A Posteriori (MAP) Decoding

$$X
ightarrow \widetilde{a}_1^{\widetilde{S}} = rg\max_{a_1^S,S} Pig(a_1^S|Xig)$$

• no external LM: simply plug in $P_{\text{RNNT}}(a_1^S|X)$

• Bayesian framework: joint integration of the RNN-T model and an external LM – Bayes' theorem: modularized components

$$X \to \tilde{a}_1^{\tilde{S}} = \operatorname*{arg\,max}_{a_1^S,S} P(a_1^S) \cdot P(X|a_1^S) = \operatorname*{arg\,max}_{a_1^S,S} P_{\mathsf{LM}}^{\lambda_1}(a_1^S) \cdot \frac{P_{\mathsf{RNNT}}(a_1^S|X)}{P_{\mathsf{RNNT-ILM}}^{\lambda_2}(a_1^S)}$$

- $P_{\text{RNNT-ILM}}$: ILM (sequence prior) implicitly learned and contained in $P_{\text{RNNT}} \rightarrow$ ILM correction

- λ_1 and λ_2 : scales applied in practice
 - shallow fusion (SF): omit $P_{\mathsf{RNNT-ILM}}$ with $\lambda_2=0$

ILM Estimation

• exact $P_{\text{RNNT-ILM}}$: intractable marginalization

$$P_{\text{RNNT-ILM}}(a_1^S) = \sum_X P_{\text{RNNT}}(a_1^S|X)P(X)$$

\rightarrow approximation: estimated \textit{P}_{ILM}

- 2 major trends of estimation
 - statistics of the acoustic training transcription
 - \rightarrow density ratio [McDermott & Sak⁺ 19]: train a separate P_{ILM} on audio transcription
 - more consistent with the P_{RNNT} computation
 - \rightarrow partially reuse the RNN-T NN for computing P_{ILM}

ILM Estimation: reuse RNN-T NN

$$P_{\mathsf{ILM}}(a_1^S) = \prod_{s=1}^S P_{\mathsf{ILM}}(a_s | a_1^{s-1}) = \prod_{s=1}^S P'(a_s | a_1^{s-1}, h')$$
$$P'(a_s | a_1^{s-1}, h') = \frac{P_{\mathsf{RNNT}}(a_s | a_1^{s-1}, h')}{1 - P_{\mathsf{RNNT}}(\epsilon | a_1^{s-1}, h')} = \mathsf{Softmax} \left[J_{\backslash \epsilon}(f^{\mathsf{pred}}(a_1^{s-1}), h') \right]$$

- h': some global representation
- P': defined over $V \rightarrow$ same form as P_{RNNT} : usually over $V \cup \{\epsilon\}$
- simple renormalization
 - instead of separate ϵ distribution in P_{RNNT} : hybrid autoregressive transducer (HAT) [Variani & Rybach⁺ 20]
- $J_{\setminus \epsilon}$: joint network J excluding the ϵ logit output

ILM Estimation: reuse RNN-T NN cont.

$$P_{\mathsf{ILM}}(a_1^S) = \prod_{s=1}^S P'(a_s|a_1^{s-1}, h')$$

$$P'(a_s|a_1^{s-1}, h') = \mathsf{Softmax} \left[\mathcal{J}_{\backslash \epsilon}(f^{\mathsf{pred}}(a_1^{s-1}), h') \right]$$
1. $\mathbf{h}'_{\mathsf{zero}} : h' = \vec{0}$ [Variani & Rybach⁺ 20, Meng & Parthasarathy⁺ 21]
2. $\mathbf{h}'_{\mathsf{avg}} : h' = \mathsf{mean}(h_1^T)$ [Zeyer & Merboldt⁺ 21, Zeineldeen & Glushko⁺ 21]
3. $\mathbf{h}'_{\mathsf{a}_1^{s-1}} : h' = f_{\theta_{\mathsf{ILM}}}(a_1^{s-1})$ where $f_{\theta_{\mathsf{ILM}}}$ is an additional NN

$$- h'_{\mathsf{mini-LSTM}}$$
 [Zeineldeen & Glushko⁺ 21]: $f_{\theta_{\mathsf{ILM}}} = \mathsf{embedding}_{\mathsf{RNNT}} \circ \mathsf{LSTM}_{50} \circ \mathsf{linear}$

$$- \mathsf{training} f_{\theta_{\mathsf{ILM}}} \text{ on audio transcription: } \mathcal{L}_{\mathsf{ILM}} = -\log P_{\mathsf{ILM}}(a_1^S)$$

 \rightarrow combines advantages: transcription statistics + reuse partial RNN-T NN

Note: these h'-based ILM estimation approaches are based on fixed θ_{RNNT}

ILM Training (ILMT)

• *h*'-based ILM approaches: use partial RNN-T NN for P_{ILM} \rightarrow include ILM into RNN-T model training stage: ILMT

- multi-task training of all parameters including $\theta_{\rm RNNT}$

$$egin{split} \mathcal{L}_{\mathsf{RNNT}} &= -\log P_{\mathsf{RNNT}}(a_1^{\mathcal{S}}|X) \ \mathcal{L}_{\mathsf{ILM}} &= -\log P_{\mathsf{ILM}}(a_1^{\mathcal{S}}) \ \mathcal{L}_{\mathsf{ILMT}} &= \mathcal{L}_{\mathsf{RNNT}} + lpha \mathcal{L}_{\mathsf{ILM}} \end{split}$$

– $\alpha:$ scaling factor

- originally for the $h'_{
 m zero}$ approach [Variani & Rybach⁺ 20, Meng & Kanda⁺ 21]
- also applicable for the h'_{avg} and h'_{a_1} approaches

Note: quality of $P_{ILM} \rightarrow$ how well it matches $P_{RNNT-ILM}$

Exact-ILM

• recall HAT [Variani & Rybach⁺ 20]: h'_{zero}-based P_{ILM}

$$\begin{array}{ll} \text{if} & J_{\backslash \epsilon} \big(f^{\mathsf{pred}}(a_1^{s-1}), f_t^{\mathsf{enc}}(X) \big) = J_{\backslash \epsilon} \big(f^{\mathsf{pred}}(a_1^{s-1}) \big) + J_{\backslash \epsilon} \big(f_t^{\mathsf{enc}}(X) \big) \\ \text{then} & P_{\mathsf{RNNT-ILM}}(a_s | a_1^{s-1}) \propto \, \exp \left[J_{\backslash \epsilon} \big(f^{\mathsf{pred}}(a_1^{s-1}), h_{\mathsf{zero}}' \big) \right] \end{array}$$

extension

$$\begin{array}{ll} \text{if} & J_{\backslash \epsilon} \big(f^{\mathsf{pred}} \big(a_1^{s-1} \big), f_t^{\mathsf{enc}} (X) \big) = J' \big(a_1^{s-1} \big) + J_{\backslash \epsilon} \big(f_t^{\mathsf{enc}} (X) \big) \\ \text{then} & P_{\mathsf{RNNT-ILM}} \big(a_s | a_1^{s-1} \big) \propto \, \exp \left[J' \big(a_1^{s-1} \big) \right] \end{array}$$

- J': any function with output size |V| + independent of X

 \bullet exact-ILM training: train J' to fulfill the assumption \rightarrow exact ILM estimation

– $\mathcal{L}_{J'}$: cross-entropy (CE) loss over Eq. (1)

- simplification: Viterbi alignment of each X + only those h_t where a_s occurs

(1)

Exact-ILM cont.

• $h'_{a_1^{s-1}}$ -based P_{ILM} + exact-ILM training

$$P_{\mathsf{ILM}}(a_1^S) = \prod_{s=1}^{S} P'(a_s | a_1^{s-1}, h'_{a_1^{s-1}})$$
$$P'(a_s | a_1^{s-1}, h'_{a_1^{s-1}}) = \mathsf{Softmax} \Big[\underbrace{\mathcal{J}_{\backslash \epsilon}(f^{\mathsf{pred}}(a_1^{s-1}), f_{\theta_{\mathsf{ILM}}}(a_1^{s-1}))}_{\mathcal{J}'(a_1^{s-1})} \Big]$$

- train $f_{\theta_{\text{ILM}}}$ (fixed θ_{RNNT})

$$\mathcal{L}_{\mathsf{ILM}}^{\mathsf{exact}} = \mathcal{L}_{\mathsf{ILM}} + \alpha \mathcal{L}_{J'}$$

 \rightarrow theoretical justification: $P_{\mathsf{RNNT-ILM}}(a_s|a_1^{s-1}) \propto \exp\left[J'(a_1^{s-1})\right]$

• other possibilities: e.g. joint training $\mathcal{L}_{RNNT} + \alpha \mathcal{L}_{J'}$ of all parameters – additionally force the model to better fulfill the assumption \rightarrow exact ILM estimation

Decoding Interpretation: why improvement with ILM correction ?

$$\begin{split} & \mathcal{K} \to \tilde{a}_{1}^{\tilde{S}} = \operatorname*{arg\,max}_{a_{1}^{S},S} \ P_{\mathsf{LM}}^{\lambda_{1}}(a_{1}^{S}) \cdot \frac{P_{\mathsf{RNNT}}(a_{1}^{S}|X)}{P_{\mathsf{ILM}}^{\lambda_{2}}(a_{1}^{S})} \\ & = \operatorname*{arg\,max}_{a_{1}^{S},S} \sum_{y_{1}^{U}:\mathcal{B}^{-1}(a_{1}^{S})} \prod_{u=1}^{U} P_{\mathsf{RNNT}}(y_{u}|\mathcal{B}(y_{1}^{u-1}), h_{1}^{T}) \cdot Q(y_{u}|\mathcal{B}(y_{1}^{u-1})) \\ & \text{ with } Q(y_{u}|\mathcal{B}(y_{1}^{u-1})) = \begin{cases} 1, & y_{u} = \epsilon \\ \frac{P_{\mathsf{LM}}^{\lambda_{1}}(y_{u}|\mathcal{B}(y_{1}^{u-1}))}{P_{\mathsf{ILM}}^{\lambda_{2}}(y_{u}|\mathcal{B}(y_{1}^{u-1}))}, & y_{u} \neq \epsilon \end{cases}$$

R1. prior removal rebalances label distribution of P_{RNNT}

 \rightarrow rely more on external LM for context modeling (desired)

R2. division by P_{ILM} boosts the label probability against (usually high) blank probability

 \rightarrow increase importance of external LM (λ_1) without suffering huge deletion errors

- limitation of SF ($\lambda_2 = 0$) - no need of decoding heuristics: length-reward ... - however tuning effort in practice: large $\lambda_2 \rightarrow \text{insertion/substitution errors}$
- 16 of 22 Wei Zhou et al.: On Language Model Integration for RNN Transducer based Speech Recognition Human Language Technology and Pattern Recognition — RWTH Aachen ICASSP 2022

Experiments

Setup

In-Domain: 960h Librispeech [Panayotov & Chen⁺ 15]

- 5k acoustic data-driven subword modeling (ADSM) units [Zhou & Zeineldeen⁺ 21]
- strictly monotonic RNN-T (U = T) [Tripathi & Lu⁺ 19]
 - 50-dimensional gammatone features [Schlüter & Bezrukov⁺ 07]
 - NN structure
 - f^{enc} : 6 × 640 bidirectional-LSTM
 - subsample 4: 2 max-pooling in f^{enc}

- f^{pred} : embedding $_{256} \circ 2 \times 640 \text{ LSTM}$
- J: linear₁₀₂₄-tanh \circ linear \rightarrow softmax
- 45 epochs on Librispeech \rightarrow base model for all experiments
- external LM: 32-layer Transformer

Cross-Domain: TED-LIUM Release 2 (TLv2) [Rousseau & Deléglise⁺ 14]

• external LM: 4 imes 2048 long short-term memory (LSTM)

Experiments

Setup cont.

- density ratio LM: same structure as f^{pred} + Librispeech transcription
- $h'_{a_1^{s-1}}$ ILM approach: $h'_{\text{mini-LSTM}}$ with $f_{\theta_{\text{ILM}}} = \text{embedding}_{\text{RNNT}} \circ \text{LSTM}_{50} \circ \text{linear}_{1280}$ -tanh 1. train $f_{\theta_{\text{ILM}}}$ with \mathcal{L}_{ILM} : 0.5-1 epoch on Librispeech transcription only
 - 2. train $f_{\theta_{\text{ILM}}}$ with $\mathcal{L}_{\text{ILM}}^{\text{exact}} = \mathcal{L}_{\text{ILM}} + \alpha \mathcal{L}_{J'}$: 0.5-1 epoch on Librispeech audio & transcription
 - Viterbi alignment using the base RNN-T model
 - $\scriptstyle \bullet \alpha: 1.0$ for in-domain evaluation and 2.0 for cross-domain evaluation
- ILMT: $\mathcal{L}_{ILMT} = \mathcal{L}_{RNNT} + \alpha \mathcal{L}_{ILM}$ with $\alpha = 0.2$
 - applied for h'_{zero} , h'_{avg} and $h'_{\text{mini-LSTM}}$ ILM approaches
 - initialize with base RNN-T model + fine-tune upto 10 epochs on Librispeech
 - \mathcal{L}_{ILM} only relevant for f^{pred} and J: freeze f^{enc}
- alignment-synchronous decoding [Saon & Tüske⁺ 20]
 - score-based pruning + beam limit 128
 - no heuristic approach: effect of each LM integration method
 - scales optimized on dev sets

LM Integration Evaluation

Madal	Evaluation	Li	ibrispee	TLv2 wer [%]			
Model Train		dev		test		dev	test
		clean	other	clean	other	ucv	lest
\mathcal{L}_{RNNT}	no LM	3.3	9.7	3.6	9.5	19.8	20.3
	SF	2.0	5.1	2.2	5.5	15.5	16.4
	density ratio	1.9	4.8	2.1	5.2	14.1	15.0
	$h'_{ m zero}$	1.8	4.4	2.0	4.8	13.6	14.4
	$h'_{ m avg}$	1.8	4.4	2.0	4.9	13.5	14.6
$+ \mathcal{L}_{ILM}$		1.8	4.3	1.9	4.7	13.4	14.4
$+ \mathcal{L}_{ILM}^{exact}$	$h'_{\rm mini-LSTM}$	1.8	4.2	1.9	4.6	13.2	14.0
\mathcal{L}_{ILMT}	h' _{zero}	1.8	4.4	2.0	4.8	13.3	14.2
	h' _{avg}	1.9	4.5	2.1	4.9	13.5	14.4
	$h'_{\rm mini-LSTM}$	1.8	4.4	2.0	4.8	13.2	14.1

- external LM: significant gain
- ILM correction: further large improvement over SF
- h'-based approaches: better than density ratio
 - $-h'_{\text{mini-LSTM}}$ $(h'_{a_1^{s-1}})$: best
- proposed $\mathcal{L}_{ILM}^{exact}$: further improve $h'_{mini-LSTM}$
 - also better than $\mathcal{L}_{\mathsf{ILMT}}$
- $\mathcal{L}_{\text{ILMT}}$: little effect on Librispeech
 - decreasing L_{ILM}: no improvement
 on the overall performance
 (HAT [Variani & Rybach⁺ 20])

Experiments

Verification: 2 decoding-perspective reasons for improvement with ILM correction R1. rebalance label distribution: rely more on external LM for context modeling R2. boost label probability: increase importance of external LM (λ_1) without huge deletion errors

- individual effect of R2 without effect of R1: SF + length reward
- individual effect of R1 without effect of R2: h'_{zero} + renorm- ϵ
 - for each $y_u \neq \epsilon$
 - 1. renormalization:

$$P_{\text{norm}}(y_u) = \frac{P_{\text{RNNT}}(y_u | \mathcal{B}(y_1^{u-1}), h_1^T) / P_{\text{ILM}}^{\lambda_2}(y_u | \mathcal{B}(y_1^{u-1}))}{\sum_{a \in V} P_{\text{RNNT}}(a | \mathcal{B}(y_1^{u-1}), h_1^T) / P_{\text{ILM}}^{\lambda_2}(a | \mathcal{B}(y_1^{u-1}))}$$

2. modify probability for search:

$$(1 - P_{\mathsf{RNNT}}(\epsilon | \mathcal{B}(y_1^{u-1}), h_1^{\mathsf{T}})) \cdot P_{\mathsf{norm}}(y_u) \cdot P_{\mathsf{LM}}^{\lambda_1}(y_u | \mathcal{B}(y_1^{u-1}))$$

– restrict label probability w.r.t. ϵ + maintain rebalanced label distribution to some extent

Verification: 2 decoding-perspective reasons for improvement with ILM correction R1. rebalance label distribution: rely more on external LM for context modeling R2. boost label probability: increase importance of external LM (λ_1) without huge deletion errors

Evaluation	λ_1	λ_2	Librispeech dev-other				• SF $+$ length r
Evaluation			WER	Sub	Del	Ins	\rightarrow verify R2
SF	0.61	Ο	5.1	3.8	0.9	0.4	• $h'_{ m zero}$ + renorm
+ length reward	0.65	U	4.8	3.8	0.5	0.5	0
$h'_{\sf zero} + {\sf renorm} - \epsilon$	0.61	0.35	4.9	3.6	0.9	0.4	\rightarrow verify R1
+ length reward	0.65	0.55	4.6	3.7	0.5	0.4	• $h'_{ m zero}$ + renorm-
h' _{zero}	0.85	0.4	4.4	3.5	0.5	0.4	• <i>h</i> ′ _{zero} : enlarge l
+ length reward	0.95	0.4	4.5	3.6	0.5	0.4	– further impr

- reward: reduced deletion errors 2 without R1
- n- ϵ : reduced substitution errors, but tion errors

without R2

- $-\epsilon + \text{length reward: complementary}$
- R1 and R2 with larger scales
 - rovement
 - length reward not needed

- RNN-T LM integration: mismatch between external LM and ILM \rightarrow ILM correction
- detailed formulation: various ILM correction-based methods in a common RNN-T framework
- decoding interpretation: 2 major reasons for performance improvement with ILM correction
 experimentally verified with detailed analysis
- exact-ILM training framework: extension upon HAT
 - theoretical justification for different ILM approaches
- systematic comparison: in-domain Librispeech and cross-domain TLv2
 - $-h'_{\text{mini-LSTM}}(h'_{a_1^{s-1}})$: best
 - -+ exact-ILM training: further improvement

Thank you for your attention

[Bahdanau & Chorowski⁺ 16] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio. End-to-End Attention-based Large Vocabulary Speech Recognition. In *Proc. ICASSP*, pp. 4945–4949, 2016.

[Chan & Jaitly⁺ 16] W. Chan, N. Jaitly, Q. Le, O. Vinyals. Listen, Attend and Spell: A Neural Network for Large Vocabulary Conversational Speech Recognition. In *Proc. ICASSP*, pp. 4960–4964, 2016.

[Deng & Zhao⁺ 21] Y. Deng, R. Zhao, Z. Meng, X. Chen, B. Liu, J. Li, Y. Gong, L. He. Improving RNN-T for Domain Scaling Using Semi-Supervised Training with Neural TTS. In *Proc. Interspeech*, pp. 751–755, 2021.

[Graves & Fernández⁺ 06] A. Graves, S. Fernández, F. J. Gomez, J. Schmidhuber. Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks.

In Proc. Int. Conf. on Machine Learning (ICML), pp. 369–376, 2006.

[Graves 12] A. Graves. Sequence Transduction with Recurrent Neural Networks, 2012. https://arxiv.org/abs/1211.3711.

[Gulcehre & Firat⁺ 15a] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares, H. Schwenk, Y. Bengio. On Using Monolingual Corpora in Neural Machine Translation, 2015. http://arxiv.org/abs/1503.03535.

[Gülçehre & Firat⁺ 15b] Ç. Gülçehre, O. Firat, K. Xu, K. Cho, L. Barrault, H. Lin, F. Bougares, H. Schwenk, Y. Bengio. On Using Monolingual Corpora in Neural Machine Translation, 2015. http://arxiv.org/abs/1503.03535.

[Kurata & Saon⁺ 21] G. Kurata, G. Saon, B. Kingsbury, D. Haws, Z. Tüske. Improving Customization of Neural Transducers by Mitigating Acoustic Mismatch of Synthesized Audio.

In Proc. Interspeech, pp. 2027–2031, 2021.

[McDermott & Sak⁺ 19] E. McDermott, H. Sak, E. Variani.

A Density Ratio Approach to Language Model Fusion in End-to-End Automatic Speech Recognition. In *IEEE ASRU*, pp. 434–441, 2019.

[Meng & Gaur⁺ 21] Z. Meng, Y. Gaur, N. Kanda, J. Li, X. Chen, Y. Wu, Y. Gong. Internal Language Model Adaptation with Text-Only Data for End-to-End Speech Recognition, 2021. https://arxiv.org/abs/2110.05354.

[Meng & Kanda⁺ 21] Z. Meng, N. Kanda, Y. Gaur, S. Parthasarathy, E. Sun, L. Lu, X. Chen, J. Li, Y. Gong.

Internal Language Model Training for Domain-Adaptive End-To-End Speech Recognition. In *Proc. ICASSP*, pp. 7338–7342, 2021.

[Meng & Parthasarathy⁺ 21] Z. Meng, S. Parthasarathy, E. Sun, Y. Gaur, N. Kanda, L. Lu, X. Chen, R. Zhao, J. Li, Y. Gong.

References

Internal Language Model Estimation for Domain-Adaptive End-to-End Speech Recognition. In *IEEE SLT*, pp. 243–250, 2021.

[Michel & Schlüter⁺ 20] W. Michel, R. Schlüter, H. Ney. Early Stage LM Integration Using Local and Global Log-Linear Combination. In *Proc. Interspeech*, pp. 3605–3609, 2020.

[Panayotov & Chen⁺ 15] V. Panayotov, G. Chen, D. Povey, S. Khudanpur. Librispeech: An ASR corpus based on public domain audio books. In *Proc. ICASSP*, pp. 5206–5210, 2015.

[Pylkkönen & Ukkonen⁺ 21] J. Pylkkönen, A. Ukkonen, J. Kilpikoski, S. Tamminen, H. Heikinheimo. Fast Text-Only Domain Adaptation of RNN-Transducer Prediction Network. In *Proc. Interspeech*, pp. 1882–1886, 2021.

[Rossenbach & Zeineldeen⁺ 21] N. Rossenbach, M. Zeineldeen, B. Hilmes, R. Schlüter, H. Ney.

Comparing the Benefit of Synthetic Training Data for Various Automatic Speech Recognition Architectures.

In IEEE ASRU, Cartagena, Colombia, Dec. 2021.

[Rousseau & Deléglise⁺ 14] A. Rousseau, P. Deléglise, Y. Estève. Enhancing the TED-LIUM Corpus with Selected Data for Language Modeling and More TED Talks. In *Proc. LREC*, pp. 3935–3939, 2014.

[Saon & Tüske⁺ 20] G. Saon, Z. Tüske, K. Audhkhasi. Alignment-Length Synchronous Decoding for RNN Transducer. In *Proc. ICASSP*, pp. 7804–7808, 2020.

[Schlüter & Bezrukov⁺ 07] R. Schlüter, I. Bezrukov, H. Wagner, H. Ney. Gammatone Features and Feature Combination for Large Vocabulary Speech Recognition. In *Proc. ICASSP*, pp. 649–652, 2007.

[Sriram & Jun⁺ 18] A. Sriram, H. Jun, S. Satheesh, A. Coates.

22 of 22 Wei Zhou et al.: On Language Model Integration for RNN Transducer based Speech Recognition Human Language Technology and Pattern Recognition — RWTH Aachen ICASSP 2022

References

Cold Fusion: Training Seq2Seq Models Together with Language Models. In *Proc. Interspeech*, pp. 387–391, 2018.

[Tripathi & Lu⁺ 19] A. Tripathi, H. Lu, H. Sak, H. Soltau. Monotonic Recurrent Neural Network Transducer and Decoding Strategies. In *IEEE ASRU*, pp. 944–948, 2019.

[Variani & Rybach⁺ 20] E. Variani, D. Rybach, C. Allauzen, M. Riley. Hybrid Autoregressive Transducer (HAT). In *Proc. ICASSP*, pp. 6139–6143, 2020.

[Zeineldeen & Glushko⁺ 21] M. Zeineldeen, A. Glushko, W. Michel, A. Zeyer, R. Schlüter, H. Ney. Investigating Methods to Improve Language Model Integration for Attention-based Encoder-Decoder ASR Models.

In Proc. Interspeech, pp. 2856–2860, 2021.

[Zeyer & Merboldt⁺ 21] A. Zeyer, A. Merboldt, W. Michel, R. Schlüter, H. Ney.

References

Librispeech Transducer Model with Internal Language Model Prior Correction. In *Proc. Interspeech*, 2021.

[Zhou & Zeineldeen⁺ 21] W. Zhou, M. Zeineldeen, Z. Zheng, R. Schlüter, H. Ney. Acoustic Data-Driven Subword Modeling for End-to-End Speech Recognition. In *Proc. Interspeech*, pp. 2886–2890, 2021.

