Google Transducer-Based Streaming Deliberation For Cascaded Encoders Ke Hu, Tara N. Sainath, Arun Narayanan, Ruoming Pang, Trevor Strohman, Google LLC, USA

1. Introduction

- Deliberation models improve ASR as 2nd pass rescoring or decoding [1, 2]
 - 1st pass is typically an RNN-T
 - However, 2nd pass deliberation is often based on attention decoders and does not stream

Streaming Deliberation

- Streaming models are user friendly
- We use a Transducer Decoder for deliberation
 - Ist-pass hypotheses streamed by a transducer
 - 2nd-pass attends to streamed partial 1st-pass hypotheses, and feed to 2nd-pass joint layer as an additional input
- The whole model naturally streams
- Novelty
 - Encode first-pass results as a context for 2nd pass decoding
 - Incremental processing instead of requiring full-context for deliberation

4. Experiment Details

Model Architecture

- Based on conformer transducer with cascaded encoders [3]
 - 17 causal + 4 non-causal layers (2.88s right context)
- Deliberation
 - Text encoder: 2-layer 640-D conformer (2.88s right) context)
 - Joint layer: Sum encoded audio, prediction network output, and attention
- Inputs and Outputs
 - 32-ms window with 10-ms frame rate
 - Stack previous 3 frames to form 512-D log-Mel features and downsample to 30ms rate
 - Outputs to predict 4,096 lowercase wordpieces

• Datasets

- Training: ~400k hours from multiple domains
- Test Sets
 - Short-from (15K utts)
 - TTS utterances: App (16K), Song (15K), Contacts (15K)
 - Contain proper nouns such as app names, song names, and personal contact names

WER (%)					
	Song	Contacts	Avg.		
1	14.8	38.8	20.4		
a Q	11.5	27.3	15.7		
	11.9	27.1	16.1		
	10.3	24.7	14.5		
6	-10.4%	-9.5%	-7.6%		

Deliberation			
vords express open			
google adsense			
the wearos phone			
ress meditation okay			

Model	B2	E2
RWER (%)	8.3	8.0

ICASSP **Paper ID: 1891**

• 1st pass naturally streams because it is a transducer

Non-Causal Encoder streams with a latency equal

• **Deliberation:** Encode 1st pass hypothesis

incrementally and attend to partial sequences

• Use a right-context conformer as text encoder

• For *i*th non-blank token, the right-most frame we need to encode is: $r_i = min(t'_{i+R}, T')$

R: conformer right-context T': maximum time frame of any token t_{i+R} : time frame of the non-blank token distance R to the right of i

• At time *t*, only look ahead *A* frames to get a partial sequence:

 $e_y(t) = \{e_{y,k} | \text{ where } r_k < t + A \text{ and } k < L\}$

A: attention lookahead r_k : right-most frame to encoder kth token

3. Transducer decoder naturally streams

Overall latency is from *R* **and** *A* **(**choose A=R and parallelize)

6. Conclusion

WER

• Transducer deliberation improves WER by 3.6% - 10.4% for various long-tail scenarios compared to cascaded encoder [2]

Latency

• The model does not introduce extra latency on top of the cascaded encoder

References

- [1] Hu et al., <u>Two-pass deliberation</u>, 2020
- [2] Hu et al., <u>Transformer deliberation</u>, 2021
- [3] Narayanan et al., <u>Cascaded encoders</u>, 2021