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WER
● Transducer deliberation improves 

WER by 3.6% - 10.4% for various 
long-tail scenarios compared to 
cascaded encoder [2]

Latency
● The model does not introduce extra 

latency on top of the cascaded 
encoder
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● Deliberation models improve ASR as 2nd pass 
rescoring or decoding [1, 2]
○ 1st pass is typically an RNN-T
○ However, 2nd pass deliberation is often based on attention 

decoders and does not stream
● Streaming Deliberation

○ Streaming models are user friendly
○ We use a Transducer Decoder for deliberation

■ 1st-pass hypotheses streamed by a transducer
■ 2nd-pass attends to streamed partial 1st-pass 

hypotheses, and feed to 2nd-pass joint layer as an 
additional input

○ The whole model naturally streams
● Novelty

○ Encode first-pass results as a context for 2nd pass decoding
○ Incremental processing instead of requiring full-context for 

deliberation

● 1st Pass is a conformer transducer
● 2nd Pass
○ Non-Causal Encoder: Conformer layers with right-context for audio
○ Text Encoder & Attention
■ Beam search decoding by first-pass conformer transducer
■ Encode output text sequences and compute attention incrementally

○ Transducer Decoder: Combine encoder output (           ), prediction network 
output (      ), and attention (      )
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Comparison of different E2E models. 

RWER computed by removing the 
top English words, and then 
compute error rates

● Model Architecture
○ Based on conformer transducer with cascaded encoders [3]

■ 17 causal + 4 non-causal layers (2.88s right context)
○ Deliberation

■ Text encoder: 2-layer 640-D conformer (2.88s right 
context)

■ Joint layer: Sum encoded audio, prediction network 
output, and attention

● Inputs and Outputs
○ 32-ms window with 10-ms frame rate
○ Stack previous 3 frames to form 512-D log-Mel features and 

downsample to 30ms rate
○ Outputs to predict 4,096 lowercase wordpieces

● Datasets
○ Training: ~400k hours from multiple domains
○ Test Sets

■ Short-from (15K utts)
■ TTS utterances: App (16K), Song (15K), Contacts (15K)

● Contain proper nouns such as app names, song names, 
and personal contact names

● 1st pass naturally streams because it is a transducer
● 2nd pass
○ Non-Causal Encoder streams with a latency equal 

to right-context R
○ Deliberation: Encode 1st pass hypothesis 

incrementally and attend to partial sequences 
1. Text encoder & Attention

● Use a right-context conformer as text encoder
● For ith non-blank token, the right-most frame we need to 

encode is:

           

      

3. Transducer decoder naturally streams

R: conformer right-context           
 : time frame of the non-blank token distance R to the right of i

     : maximum time frame of any token

2. Attend to partial hypotheses
○ At time t, only look ahead A frames to get a partial sequence:

A: attention lookahead : right-most frame to encoder kth token
L: maximum number of non-blank tokens 

Overall latency is from R and A (choose A=R and parallelize)
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