Super-Resolution

Enhancing the resolution limit of sensing systems

- single-molecule microscopy
- medical imaging
- radar imaging
- astronomy

Motivation

1. Super-resolution with unknown point spread functions

$$
y(t)=\sum_{j=1}^{J} c_{j} \delta\left(t-\tau_{j}\right) * g_{\tau_{j}}(t)
$$

-3D single-molecule microscopy

- non-stationary blind deconvolution of seismic data

2. Parameter estimation in radar imaging

$$
y(t)=\sum_{j=1}^{J} c_{j} e^{i 2 \pi \nu_{j} t} x\left(t-\mu_{j}\right)
$$

New Model

Consider the observation model:

$$
\boldsymbol{y}(n)=\sum_{j=1}^{J} c_{j} e^{-i 2 \pi n \tau_{j}} \boldsymbol{g}_{j}(n), n=-2 M, \ldots, 2 M
$$

Given samples $\{\boldsymbol{y}(n)\}$, the goal is to

- super-resolve $\left\{\tau_{j}\right\}$
- recover $\left\{c_{j}\right\}$
- recover samples of the unknown waveforms $\left\{\boldsymbol{g}_{j}(n)\right\}$

This problem is severely ill-posed

- number of samples $N:=4 M+1$
- number of unknowns $J N+2 J$

Subspace Model and Atomic Norm Minimization

- A subspace model for \boldsymbol{g}_{j}

$$
\boldsymbol{g}_{j}=\boldsymbol{B} \boldsymbol{h}_{j}, \quad \boldsymbol{B}=\left[\boldsymbol{b}_{-2 M}, \cdots, \boldsymbol{b}_{2 M}\right]^{H}, \boldsymbol{b}_{n} \in \mathbb{C}^{K \times 1}
$$

- Rewrite the observation

$$
\begin{aligned}
\boldsymbol{y}(n) & =\sum_{j=1}^{J} c_{j} \boldsymbol{a}\left(\tau_{j}\right)^{H} \boldsymbol{e}_{n} \boldsymbol{b}_{n}^{H} \boldsymbol{h}_{j} \\
& =\left\langle\sum_{j=1}^{J} c_{j} \boldsymbol{h}_{j} \boldsymbol{a}\left(\tau_{j}\right)^{H}, \boldsymbol{b}_{n} \boldsymbol{e}_{n}^{H}\right\rangle \\
& =:\left\langle\boldsymbol{X}_{o}, \boldsymbol{b}_{n} \boldsymbol{e}_{n}^{H}\right\rangle
\end{aligned}
$$

where $\boldsymbol{a}(\tau)=\left[e^{i 2 \pi(-2 M) \tau} \cdots 1 \cdots e^{i 2 \pi(2 M) \tau}\right]^{T}$.

- Lift the non-convex problem into a convex program

Define the atomic norm associated with the set of atoms
$\mathcal{A}=\left\{\boldsymbol{h} \boldsymbol{a}(\tau)^{H}: \tau \in[0,1),\|\boldsymbol{h}\|_{2}=1, \boldsymbol{h} \in \mathbb{C}^{K \times 1}\right\}$ as

$$
\begin{aligned}
\|\boldsymbol{X}\|_{\mathcal{A}} & =\inf \{t>0: \boldsymbol{X} \in t \operatorname{conv}(\mathcal{A})\} \\
& =\inf _{c_{k}, \tau_{k}\left\|\boldsymbol{h}_{k}\right\|_{2}=1}\left\{\sum_{k}\left|c_{k}\right|: \boldsymbol{X}=\sum_{k} c_{k} \boldsymbol{h}_{k} \boldsymbol{a}\left(\tau_{k}\right)^{H}\right\} .
\end{aligned}
$$

We solve
minimize $\|\boldsymbol{X}\|_{\mathcal{A}}$
subject to $\boldsymbol{y}(n)=\left\langle\boldsymbol{X}, \boldsymbol{b}_{n} \boldsymbol{e}_{n}^{H}\right\rangle, n=-2 M, \cdots, 2 M$.
Denoting $\boldsymbol{q}(\tau)=\sum_{n=-2 M}^{2 M} \boldsymbol{\lambda}(n) e^{i 2 \pi n \tau} \boldsymbol{b}_{n}$ as the dual polynomial with $\boldsymbol{\lambda}$ being the dual optimizer, $\left\{\tau_{j}\right\}$ are localized by selecting out the corresponding values of τ such that $\|\boldsymbol{q}(\tau)\|_{2}=1$.

Main Result

If the following conditions

1. $\Delta_{\tau}=\min _{k \neq j}\left|\tau_{k}-\tau_{j}\right| \geq \frac{1}{M}, M \geq 64$,
2. \boldsymbol{b}_{n} are i.i.d. samples from a distribution \mathcal{F} satisfying
i) $\mathbb{E}\left[\boldsymbol{b} \boldsymbol{b}^{H}\right]=\boldsymbol{I}_{K}$; ii) $\max _{1 \leq p \leq K}|\boldsymbol{b}(p)|^{2} \leq \mu$ for $\boldsymbol{b} \in \mathcal{F}$,
3. \boldsymbol{h}_{j} drawn i.i.d. from the uniform distribution on the complex unit sphere $\mathbb{C} \mathbb{S}^{K-1}$,
are satisfied, then there exists some some C such that

$$
M \geq C \mu J K \log \left(\frac{M J K}{\delta}\right) \log ^{2}\left(\frac{M K}{\delta}\right)
$$

is sufficient to guarantee that we can recover \boldsymbol{X}_{o} with probability at least $1-\delta$.

Numerical Simulations

1. A simple example

- we use CVX to solve the optimization problem (SDP)
- set $N=64, J=3$ and $K=4$, randomly generate the locations of
J spikes on $[0,1)$ under the minimum separation condition $\Delta_{\tau}=\frac{1}{N}$
- build B with entries generated randomly from the standard

Gaussian distribution
$-\boldsymbol{h}_{j}$ is also generated using i.i.d. real Gaussian random variables and is then normalized

2. Phase transition

3. A practical example

- set $J=3$ and generate the locations of $\left\{\tau_{j}\right\}$ uniformly at random between 0 and 1 under the minimum separation $\Delta_{\tau}=\frac{1}{M}$
$\triangle \boldsymbol{g}_{j}(n)$ are samples of the Gaussian waveform $g_{J}(t)=\frac{1}{\sqrt{2 \pi \sigma_{J}^{2}}} e^{-\frac{t^{2}}{2 \sigma_{J}^{2}}}$ with unknown variance $\sigma_{J}^{2} \in[0.1,1]$
- \boldsymbol{B} is a rank-5 approximation of the dictionary D_{g}, where $\boldsymbol{D}_{\boldsymbol{g}}=\left[\boldsymbol{g}_{\sigma_{J}=0.1} \boldsymbol{g}_{\sigma_{J}=0.11} \boldsymbol{g}_{\sigma_{J}=0.12} \cdots \boldsymbol{g}_{\sigma_{J}=1}\right]$

Reference

Y. Chi, "Guaranteed blind sparse spikes deconvolution via lifting and convex optimization," arXiv preprint arXiv:1506.02751, 2015.

