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Motivation
 Semantic word embedding algorithms (e.g. word2vec and GloVe) aim to

capture semantic information from text.
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Motivation
 Semantic word embedding algorithms (e.g. word2vec and GloVe) aim to

capture semantic information from text.
 Semantic embeddings are diverse compared to word embeddings learned

by a neural network language model (NNLM).

© 2016 International Business Machines Corporation 3

Sim.
Rank
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GloVe FNNLM GloVe FNNLM GloVe FNNLM

1 Remarks Address Machines Stun Learn Learn

2 Address Event Guns Pellet Teaching Learned

3 Speeches Ceremony Gun Celebratory Learned Learns

4 Comments Statement Hand Millimeter Skills Complain

5 Bush Remarks Automatic Sharpnel Teach Confirmation

Top-5 nearest words found using cosine similarity on GloVe and feedforward NNLM (FNNLM) embeddings.



What is the GloVe Algorithm for
Computing Semantic Word Embeddings?
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GloVe – Global Vectors for Word Representation

 GloVe performs a bilinear approximation of the word co-occurrence
matrix computed over training data.

 The V x V dimensional word co-occurrence matrix C is obtained by
traversing training text and counting co-occurrences.
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Central word: evening

“Good evening and welcome to the
evening news”.

Context: (good, evening), (and, evening)



GloVe – Global Vectors for Word Representation

 GloVe performs a bilinear approximation of the word co-occurrence
matrix computed over training data.

 The V x V dimensional word co-occurrence matrix C is obtained by
traversing training text and counting co-occurences.
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GloVe – Global Vectors for Word Representation

 GloVe performs a bilinear approximation of the word co-occurrence

matrix computed over training data.
 The V x D dimensional GloVe matrix G is obtained as follows:
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GloVe – Global Vectors for Word Representation

 GloVe performs a bilinear approximation of the word co-occurrence

matrix computed over training data.
 The V x D dimensional GloVe matrix G is obtained as follows:

where b is a vector of biases and f(x) is the weighting function:

© 2016 International Business Machines Corporation 8



How do we include GloVe embeddings
in a feed-forward NNLM?
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A Standard Feed-forward NNLM (FNNLM) 

 A feed-forward NNLM predicts the next word by passing continuous

embeddings of the history words through a feed-forward NN:
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A Standard Feed-forward NNLM (FNNLM) 

 A FNNLM uses two different word embeddings learned to minimize 

training text perplexity.
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Semantic Word Embedding (SWE) FNNLM 

 A SWE-FNNLM incorporates the GloVe matrix G as follows:
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Intuition Behind SWE-NNLM

 Input feature concatenation fuses two diverse word embeddings.
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Intuition Behind SWE-NNLM
 Output weight expansion performs log-linear interpolation of two 

un-normalized FNNLMs.
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LM Experimental Setup
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 We trained all NNLMs on a 12M word subset of the 2007 IBM GALE
English Broadcast news ASR system.

 Vocab size limited to 20K words.

 300-dimensional GloVe word embeddings trained on the 2B word
English Gigaword corpus.

 LM training used a mini-batch based stochastic gradient descent.

 We do not update the GloVe embeddings during LM training since it
gave insignificant perplexity reduction.



LM Results
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 LM perplexities on dev04 set:

LM Perplexity % Reduction

6gm KN 144.5 -

5gm FNNLM (300,500)
300-dim embeddings, 500 hidden neurons

144.9 -0.3%

5gm SWE-FNNLM (300,500)+300 128.5 11.1%

6gm KN + FNNLM 118.3 18.1%

6gm KN + SWE-FNNLM 111.8 22.6%

All 109.6 24.2%



LM Results
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 LM perplexities on dev04 set:

 SWE-FNNLM gives significant perplexity improvement over a
standard FNNLM.

 FNNLM of similar size (600,800) gives worse perplexity of 151. 

LM Perplexity % Reduction

6gm KN 144.5 -

5gm FNNLM (300,500)
300-dim embeddings, 500 hidden neurons

144.9 -0.3%

5gm SWE-FNNLM (300,500)+300 128.5 11.1%

6gm KN + FNNLM 118.3 18.1%

6gm KN + SWE-FNNLM 111.8 22.6%

All 109.6 24.2%



LM Results
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 Is including GloVe embedding in the output layer important? 

vs



LM Results
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 Is including GloVe embedding in the output layer important? 

LM Perplexity % Reduction

6gm KN 144.5 -

5gm Input-only SWE-FNNLM 134.2 7.1%

5gm full SWE-FNNLM 128.5 11.1%



LM Results
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 Is including GloVe embedding in the output layer important? 

 Both input feature fusion and input → output weight expansion
contribute significantly to perplexity improvement. 

LM Perplexity % Reduction

6gm KN 144.5 -

5gm Input-only SWE-FNNLM 134.2 7.1%

5gm full SWE-FNNLM 128.5 11.1%



LM Results
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 SWE-FNNLM gets a head-start during training due to diverse
embeddings trained on large corpus.



LM Results
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 SWE-FNNLM enables rapid adaptation of LMs on new in-domain
data.



ASR Lattice Rescoring Setup
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 Acoustic model is CNN-HMM hybrid system trained on 400 hrs of
broadcast news data.

 Decoder vocabulary is 80K words.

 Baseline LM is a linear interpolation of 4gm KN LMs trained on
different data sources from a 350M word corpus.

 We generated lattices on the rt04 test set using a pruned baseline
LM.



ASR Lattice Rescoring Results
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 WERs on the rt04 test set after lattice rescoring:

       

       

 

LM WER % Reduction

4gm KN 11.3% -

4gm KN + FNNLM 11.0% 2.6%

4gm KN + SWE-FNNLM 10.7% 5.3%



ASR Lattice Rescoring Results
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 WERs on the rt04 test set after lattice rescoring:

       

       The above WER reductions are significant (p < 0.001) using NIST SCTK's sc_stats.

LM WER % Reduction

4gm KN 11.3% -

4gm KN + FNNLM 11.0% 2.6%

4gm KN + SWE-FNNLM 10.7% 5.3%



ASR Lattice Rescoring Results
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 WERs on the rt04 test set after lattice rescoring:

       

       The above WER reductions are significant (p < 0.001) using NIST SCTK's sc_stats.

 Comparison with 350M word LMs: Model M (10.6%) and FNNLM
(10.3%).

 

LM WER % Reduction

4gm KN 11.3% -

4gm KN + FNNLM 11.0% 2.6%

4gm KN + SWE-FNNLM 10.7% 5.3%

A. Sethy, S. Chen, E. Arisoy, B. Ramabhadran , “Unnormalized exponential and neural network language
models”, Proc. ICASSP, 2015.



Conclusion
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 Semantic word embeddings trained on a large corpus improve neural
network language models.

 The performance benefit appears due to diversity of semantic
embeddings to the embeddings learned by a NNLM and large
corpus used to train the semantic embeddings.  

 Including semantic word embeddings through both feature fusion
and input → output weight expansion helps LM performance.

 We are currently exploring application of semantic word embeddings
to recurrent NNLMs.


