## An Efficient Active Set Algorithm for Covariance Based Joint Data and Activity Detection for Massive Random Access with Massive MIMO

## Ziyue Wang ${ }^{\star,}$, Zhilin Chen ${ }^{\dagger}$, Ya-Feng Liu ${ }^{\S}$, Foad Sohrabi ${ }^{\dagger}$, and Wei Yu ${ }^{\dagger}$

${ }^{\star}$ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China † Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada ${ }^{\S}$ LSEC, ICMSEC, AMSS, Chinese Academy of Sciences, Beijing, China Email: wangziyue20@mails.ucas.ac.cn, \{zchen, fsohrabi, weiyu\}@ece.utoronto.ca, yafliu@lsec.cc.ac.cn

## Motivation

The uncoordinated random access is a challenging task in massive machine-type communication (mMTC)

- A large number of sporadically active devices wish to send small data to the base-station (BS) in the uplink.
- The BS acquires the active devices and their data by detecting the transmitted preassigned nonorthogonal signature sequences.
- Covariance based approach [1, 2, 3]: formulate the detection problem as a maximum likelihood estimation (MLE) problem.
- The state-of-the-art coordinate descent (CD) algorithm doesn't take advantage of the sparsity of the true solution.


## Main Contribution

- Perform the covariance based approach for joint data and activity detection
- Propose a computationally efficient active set algorithm with convergence guarantee


## System Model

- Single cell with one BS equipped with $M$ antennas.
- $N$ single-antenna devices, $K$ of which are active at a time
- Each active device wishes to transmit $J$ bits of data to the BS
- Each device $n$ has a unique signature sequence set $\mathcal{S}_{n}=$ $\left\{\mathbf{s}_{n, 1}, \mathbf{s}_{n, 2}, \ldots, \mathbf{s}_{n, Q}\right\}$, where $\mathbf{s}_{n, q}$
$L$ is the signature sequence length.
- Channel $\sqrt{g_{n}} \mathbf{h}_{n} \in \mathbb{C}^{M \times 1}$ of user $n$ includes both
$\diamond$ large-scale fading component $g_{n} \geq 0$;
Rayleigh fading component $\mathbf{h}_{n} \in \mathbb{C}^{M \times 1}$ following the i.i.d. complex Gaussian distribution
- Whether or not $\mathbf{s}_{n, q}$ is transmitted is indicated as $\chi_{n, q} \in\{0,1\}$ which satisfies $\sum_{q=1}^{Q} \chi_{n, q} \in\{0,1\}$
$\diamond \sum_{q=1}^{Q} \chi_{n, q}=1$ indicates that device $n$ is active; $\diamond \sum_{q=1}^{Q} \chi_{n, q}=0$ indicates that device $n$ is inactive - Define

$$
\begin{aligned}
& \diamond \mathbf{S}=\left[\mathbf{S}_{1}, \ldots, \mathbf{S}_{N}\right] \in \mathbb{C}^{L \times N Q}, \text { where } \mathbf{S}_{n}=\left[\mathbf{s}_{n, 1}, \ldots, \mathbf{s}_{n, Q}\right] . \\
& \diamond \Gamma^{1 / 2}=\operatorname{diag}\left\{\mathbf{D}_{1}, \ldots, \mathbf{D}_{N}\right\} \in \mathbb{C}^{N Q \times N Q}, \text { where } \mathbf{D}_{n} \\
& \sqrt{g_{n}} \operatorname{diag}\left\{\chi_{n, 1}, \ldots, \chi_{n, Q}\right\} . \\
& \diamond \mathbf{H}=\left[\mathbf{H}_{1}^{T}, \ldots, \mathbf{H}_{N}^{T}\right]^{T} \in \mathbb{C}^{N Q \times M} \text {, where } \mathbf{H}_{n}=\left[\mathbf{h}_{n}, \ldots, \mathbf{h}_{n}\right]^{T} .
\end{aligned}
$$

System Model (Cont.)

- The received signal $\mathbf{Y} \in \mathbb{C}^{L \times M}$ at the BS can be expressed as

$$
\begin{align*}
\mathbf{Y} & =\sum_{n=1}^{N} \sum_{q=1}^{Q} \chi_{n, q} \mathbf{s}_{n, q} \sqrt{g_{n}} \mathbf{h}_{n}^{T}+\mathbf{W} \\
& =\mathbf{S} \boldsymbol{\Gamma}^{1 / 2} \mathbf{H}+\mathbf{W}, \tag{1}
\end{align*}
$$

where $\mathbf{W} \in \mathbb{C}^{L \times M}$ is the effective i.i.d. Gaussian noise with variance wher
$\sigma_{w}^{2}$

- For given $\gamma$ (diagonal entries of $\boldsymbol{\Gamma}$ ), the $m$-th column of $\mathbf{Y}$ can be seen as independent samples from a complex Gaussian distribution as

$$
\mathbf{y}_{m} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{S \Gamma}^{1 / 2} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{1 / 2} \mathbf{S}^{H}+\sigma_{w}^{2} \mathbf{I}\right),
$$

where $\boldsymbol{\Lambda}$ is a block diagonal matrix with each block being the all-one matrix $E \in \mathbb{R}^{Q \times Q}$, and I is an identity matrix.

- Since there is at most one non-zero entry in each diagonal block D in $\Gamma^{1 / 2}$, the covariance matrix in (2) can be simplified as

$$
\mathbf{S} \boldsymbol{\Gamma}^{1 / 2} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^{1 / 2} \mathbf{S}^{H}+\sigma_{w}^{2} \mathbf{I}=\mathbf{S} \boldsymbol{\Gamma} \mathbf{S}^{H}+\sigma_{w}^{2} \mathbf{I} .
$$

- The MLE problem can be formulated as

$$
\begin{array}{ll}
\min _{\gamma} & \log \left|\mathbf{S \Gamma S}^{H}+\sigma_{w}^{2} \mathbf{I}\right|+\operatorname{Tr}\left(\left(\mathbf{S \Gamma S}^{H}+\sigma_{w}^{2} \mathbf{I}\right)^{-1} \hat{\boldsymbol{\Sigma}}\right)  \tag{3a}\\
\text { s.t. } & \gamma \geq \mathbf{0} .
\end{array}
$$

- The sample covariance matrix $\boldsymbol{\Sigma}=\mathbf{Y Y}^{H} / M$ is computed by averaging over different antennas.
- The constraint $\gamma \geq 0$ is due to the fact that $\gamma_{n, q}=g_{n} \chi_{n, q} \geq 0$ for all $n$ and $q$.


## Problem Formulation and Analysis

- Let $f(\gamma)$ denote the objective function of problem (3). The gradient of $f(\gamma)$ with respect to $\gamma_{n, q}$ is

$$
[\nabla f(\gamma)]_{n, q}=\mathbf{s}_{n, q}^{H} \boldsymbol{\Sigma}^{-1} \mathbf{s}_{n, q}-\mathbf{s}_{n, q}^{H} \boldsymbol{\Sigma}^{-1} \hat{\Sigma} \boldsymbol{\Sigma}^{-1} \mathbf{s}_{n, q} .
$$

- The first-order (necessary) optimality condition of problem (3) is

$$
[\nabla f(\gamma)]_{n, q}\left\{\begin{array}{ll}
=0, & \text { if } \gamma_{n, q}>0 ; \\
\geq 0, & \text { if } \gamma_{n, q}=0,
\end{array} \forall q, n,\right.
$$

- Let $[\cdot]_{+}$denote the projection operator onto the nonnegative orthant. Then (4) is equivalent to

Active Set Algorithm

- To fully exploit the sparsity of the true solution of (3), the active set should
contain the indices of active sequences,
have the smallest possible cardinality.
- At the $k$-th iteration, the proposed selection strategy of the active set $\mathcal{A}^{k}$ is

$$
\mathcal{A}^{k}=\left\{(i, q) \mid \gamma_{i, q}^{k}>\omega_{k} \text { or }\left[\nabla f\left(\gamma^{k}\right)\right]_{i, q}<-\nu_{k}\right\}
$$

where $\omega_{k}, \nu_{k}>0$ and $\omega_{k} \downarrow 0$ and $\nu_{k} \downarrow 0$ (monotonically decrease and converge to zero)

- Once the active set $\mathcal{A}^{k}$ is selected, we solve the following subproblem

$$
\begin{equation*}
\min \quad \hat{f}\left(\gamma_{\mathcal{A}^{k}}\right) \tag{6a}
\end{equation*}
$$

$$
\begin{equation*}
\text { s. t. } \quad \gamma_{\mathcal{A}^{k}} \geq 0 \text {, } \tag{6b}
\end{equation*}
$$

where $\gamma_{A^{k}}$ is the subvector of $\gamma$ indexed by $\mathcal{A}^{k}$ and $\hat{f}\left(\gamma_{A^{k}}\right)$ is $f(\gamma)$ defined over $\gamma_{\mathcal{A}^{k}}$ with all the other variables fixed being zero.

- If the set $\mathcal{A}^{k}$ in (6) is properly chosen, the dimension of problem (6) is potentially much smaller than that of problem (3).
- We apply the spectral PG algorithm [4] to solve the subproblem in (6) until $\boldsymbol{\gamma}_{\mathcal{A}^{k}}^{k+1}$ satisfying

$$
\left\|\left[\left[\gamma_{\mathcal{A}^{k}}^{k+1}-\nabla \hat{f}\left(\gamma_{\mathcal{A}^{k}}^{k+1}\right)\right]_{+}-\gamma_{\mathcal{A}^{k}}^{k+1}\right]\right\|<\varepsilon_{k},
$$

where $\varepsilon_{k}>0$ is the solution tolerance at the $k$-th iteration.

- The pseudocodes of the proposed algorithm are given in Algorithm 1.
Igorithm 1 Proposed active set PG algorithm for solving problem (3)

1. Initialize: $\boldsymbol{\gamma}^{0}=0, k=0,\left\{\omega_{k}, \nu_{k}, \varepsilon_{k}\right\}_{k \geq 0}$, and $\varepsilon>0$;

2: repeat
: repeat $\quad$ Select the active set $\mathcal{A}^{k}$ according to (5)
Apply the spectral PG algorithm [4] to solve the subproblem (6) until (7)
is satisfied; is satisfied;
6: until $\left\|\left[\gamma^{k}-\nabla f\left(\gamma^{k}\right)\right]_{+}-\gamma^{k}\right\|<$
Output: $\gamma^{k}$

- Convergence property: For any given tolerance $\varepsilon>0$, suppose that the parameters $\omega_{k}$ and $\nu_{k}$ in (5) satisfy $\omega_{k} \downarrow 0$ and $\nu_{k} \downarrow 0$ and the parameter $\varepsilon_{k}$ in (7) satisfy $\lim \varepsilon_{k}<\varepsilon$, then the active set PG Algorithm 1 will terminate within a finite number of iterations.


## imulation Results

- The power spectrum density of the background noise is $-169 \mathrm{dBm} / \mathrm{Hz}$ over 10 MHz and the transmit power of each device is 25 dBm

A single cell of radius 1000 m , all devices are located in the cell edge $g_{n}$ 's are the same for all devices;

- All signature sequences from i.i.i. complex Gaussian distribution with zero mean and unit variance
Parameters setting: $M=256, L=150$, and $J=1$ (and thus Parameters setting: $M=256, L=150$, and $J=1$
$Q=2$ ), $K / N=0.1$ ( $10 \%$ of the total devices are active).
- Compare the proposed Algorithm 1 with
- random CD algorithm in [1];

Ideal CD/PG algorithm: apply the CD/PG algorithm to solve problem (3) defined over the indices of active sequences;

- Parameters setting: $\omega_{k}=10^{-6-k}, \varepsilon_{k}=\max \left\{10^{-k}, 0.8 * 10^{-3}\right\}$ $\nu_{k}=\min \left\{10^{4-k}, 0.5\left|\min _{n, q}\left\{\left[\nabla f\left(\gamma^{k}\right)\right]_{n, q}\right\}\right|\right\}, \varepsilon=10^{-3}$.
Average over 500 Monte-Carlo runs


Left: Average ratio $\left|\mathcal{A}^{k}\right| / K ;$ Average number of iterations to terminate Right: Average CPU time comparison.

- The ratio is in the interval [1.5, 2.5], and Algorithm 1 will generally terminate within 4-7 iterations.
- The proposed active set selection strategy (5) is very efficient
- In CPU time, the proposed Algorithm 1 significantly outperforms the random CD algorithm, and even achieves slightly better efficiency than the ideal CD algorithm.


## References

1]. S. Haghighatshoar. P. Jung, and G. Caire. "Improved scaling law for activity detection in massive
MiMo systems," in Proc. IEEEE Int. Symp. Inf. Theory (IIIT), Vail, CO, USA, June 2018, pp. 381-355
Z. Chen, $F$. Sohrabi, $Y$.-F. Liu, and W. Yu, "Covariance based joint activity and data detection for massive random aceess with massive MIMO," in Proc. IEEE Int. Conf. Commun. (ICC)
Shanghai, China, May 2019, pp. $1-6$.




