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Motivation

• The uncoordinated random access is a challenging task in massive
machine-type communication (mMTC).

• A large number of sporadically active devices wish to send small data
to the base-station (BS) in the uplink.

• The BS acquires the active devices and their data by detecting the
transmitted preassigned nonorthogonal signature sequences.

• Covariance based approach [1, 2, 3]: formulate the detection problem
as a maximum likelihood estimation (MLE) problem.

• The state-of-the-art coordinate descent (CD) algorithm doesn’t take
advantage of the sparsity of the true solution.

Main Contribution

• Perform the covariance based approach for joint data and activity
detection.

• Propose a computationally efficient active set algorithm with con-
vergence guarantee.

System Model

• Single cell with one BS equipped with M antennas.

• N single-antenna devices, K of which are active at a time.

• Each active device wishes to transmit J bits of data to the BS.

• Each device n has a unique signature sequence set Sn =
{sn,1, sn,2, . . . , sn,Q}, where sn,q ∈ CL×1, 1 ≤ q ≤ Q , 2J , and
L is the signature sequence length.

• Channel
√
gnhn ∈ CM×1 of user n includes both

� large-scale fading component gn ≥ 0;

� Rayleigh fading component hn ∈ CM×1 following the i.i.d. com-
plex Gaussian distribution.

• Whether or not sn,q is transmitted is indicated as χn,q ∈ {0, 1},
which satisfies

∑Q
q=1 χn,q ∈ {0, 1}

�
∑Q

q=1 χn,q = 1 indicates that device n is active;

�
∑Q

q=1 χn,q = 0 indicates that device n is inactive.

• Define

� S = [S1, . . . ,SN ] ∈ CL×NQ, where Sn = [sn,1, . . . , sn,Q].

� Γ1/2 = diag{D1, . . . ,DN} ∈ CNQ×NQ, where Dn =√
gn diag{χn,1, . . . , χn,Q}.

� H = [HT
1 , . . . ,H

T
N ]

T ∈ CNQ×M , where Hn = [hn, . . . ,hn]
T .

System Model (Cont.)

• The received signal Y ∈ CL×M at the BS can be expressed as

Y =
N∑

n=1

Q∑
q=1

χn,qsn,q
√
gnh

T
n + W

= SΓ1/2H + W, (1)

where W ∈ CL×M is the effective i.i.d. Gaussian noise with variance
σ2
w.

• For given γ (diagonal entries of Γ), the m-th column of Y can be
seen as independent samples from a complex Gaussian distribution
as

ym ∼ CN
(
0,SΓ1/2ΛΓ1/2SH + σ2

wI
)
, (2)

where Λ is a block diagonal matrix with each block being the all-one
matrix E ∈ RQ×Q, and I is an identity matrix.

• Since there is at most one non-zero entry in each diagonal block Dn

in Γ1/2, the covariance matrix in (2) can be simplified as

SΓ1/2ΛΓ1/2SH + σ2
wI = SΓSH + σ2

wI.

• The MLE problem can be formulated as

min
γ

log
∣∣SΓSH + σ2

wI
∣∣+ Tr

((
SΓSH + σ2

wI
)−1

Σ̂
)

(3a)

s. t. γ ≥ 0. (3b)

• The sample covariance matrix Σ̂ = YYH/M is computed by aver-
aging over different antennas.

• The constraint γ ≥ 0 is due to the fact that γn,q = gnχn,q ≥ 0 for
all n and q.

Problem Formulation and Analysis

• Let f(γ) denote the objective function of problem (3). The gradient
of f(γ) with respect to γn,q is

[∇f(γ)]n,q = sHn,qΣ
−1sn,q − sHn,qΣ

−1Σ̂Σ−1sn,q.

• The first-order (necessary) optimality condition of problem (3) is

[∇f(γ)]n,q

{
= 0, if γn,q > 0;

≥ 0, if γn,q = 0,
∀ q, n, (4)

• Let [·]+ denote the projection operator onto the nonnegative orthant.
Then (4) is equivalent to

[γ −∇f(γ)]+ − γ = 0.

Active Set Algorithm

• To fully exploit the sparsity of the true solution of (3), the active set
should

– contain the indices of active sequences;

– have the smallest possible cardinality.

• At the k-th iteration, the proposed selection strategy of the active
set Ak is

Ak =
{
(i, q) | γki,q > ωk or [∇f(γk)]i,q < −νk

}
, (5)

where ωk, νk > 0 and ωk ↓ 0 and νk ↓ 0 (monotonically decrease
and converge to zero).

• Once the active set Ak is selected, we solve the following subproblem

min f̂(γAk) (6a)

s. t. γAk ≥ 0, (6b)

where γAk is the subvector of γ indexed by Ak and f̂(γAk) is f(γ)
defined over γAk with all the other variables fixed being zero.

• If the set Ak in (6) is properly chosen, the dimension of problem (6)
is potentially much smaller than that of problem (3).

• We apply the spectral PG algorithm [4] to solve the subproblem in
(6) until γk+1

Ak satisfying∥∥∥[[γk+1
Ak −∇f̂(γk+1

Ak )]+ − γk+1
Ak

]∥∥∥ < εk, (7)

where εk > 0 is the solution tolerance at the k-th iteration.

• The pseudocodes of the proposed algorithm are given in Algorithm 1.

Algorithm 1 Proposed active set PG algorithm for solving problem (3)

1: Initialize: γ0 = 0, k = 0, {ωk, νk, εk}k≥0 , and ε > 0;
2: repeat
3: Select the active set Ak according to (5);
4: Apply the spectral PG algorithm [4] to solve the subproblem (6) until (7)

is satisfied;
5: Set k ← k + 1;
6: until ‖[γk −∇f(γk)]+ − γk‖ < ε
7: Output: γk

• Convergence property: For any given tolerance ε > 0, suppose that
the parameters ωk and νk in (5) satisfy ωk ↓ 0 and νk ↓ 0 and
the parameter εk in (7) satisfy lim

k→∞
εk < ε, then the active set PG

Algorithm 1 will terminate within a finite number of iterations.

Simulation Results

• The power spectrum density of the background noise is −169dBm/Hz
over 10 MHz and the transmit power of each device is 25dBm;

• A single cell of radius 1000m, all devices are located in the cell edge,
gn’s are the same for all devices;

• All signature sequences from i.i.d. complex Gaussian distribution with
zero mean and unit variance

• Parameters setting: M = 256, L = 150, and J = 1 (and thus
Q = 2), K/N = 0.1 (10% of the total devices are active).

• Compare the proposed Algorithm 1 with

– random CD algorithm in [1];

– Ideal CD/PG algorithm: apply the CD/PG algorithm to solve
problem (3) defined over the indices of active sequences;

• Parameters setting: ωk = 10−6−k, εk = max
{
10−k, 0.8 ∗ 10−3

}
,

νk = min
{
104−k, 0.5

∣∣∣minn,q

{[
∇f(γk)

]
n,q

}∣∣∣}, ε = 10−3.

• Average over 500 Monte-Carlo runs.
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Left: Average ratio |Ak|/K; Average number of iterations to terminate;

Right: Average CPU time comparison.

• The ratio is in the interval [1.5, 2.5], and Algorithm 1 will generally
terminate within 4–7 iterations.

• The proposed active set selection strategy (5) is very efficient.

• In CPU time, the proposed Algorithm 1 significantly outperforms the
random CD algorithm, and even achieves slightly better efficiency
than the ideal CD algorithm.

References

[1] S. Haghighatshoar, P. Jung, and G. Caire, ”Improved scaling law for activity detection in massive
MIMO systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, June 2018, pp.
381–385.

[2] Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, ”Covariance based joint activity and data detection
for massive random access with massive MIMO,” in Proc. IEEE Int. Conf. Commun. (ICC),
Shanghai, China, May 2019, pp. 1–6.

[3] Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, ”Phase transition analysis for covari-
ance based massive random access with massive MIMO,” 2020. [Online]. Available:
https://arxiv.org/abs/2003.04175

[4] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, ”Nonmonotone spectral projected gradient meth-
ods on convex sets,”SIAM J. Optim., vol. 10, no. 4, pp. 1196–1211, 2000.


