

An Efficient Active Set Algorithm for Covariance Based Joint Data and Activity Detection for Massive Random Access with Massive MIMO

Motivation

- The uncoordinated random access is a challenging task in massive machine-type communication (mMTC).
- A large number of sporadically active devices wish to send small data to the base-station (BS) in the uplink.
- The BS acquires the active devices and their data by detecting the transmitted preassigned nonorthogonal signature sequences.
- Covariance based approach [1, 2, 3]: formulate the detection problem as a maximum likelihood estimation (MLE) problem.
- The state-of-the-art coordinate descent (CD) algorithm doesn't take advantage of the sparsity of the true solution.

Main Contribution

- Perform the covariance based approach for joint data and activity detection.
- Propose a computationally efficient active set algorithm with convergence guarantee.

System Model

- Single cell with one BS equipped with M antennas.
- N single-antenna devices, K of which are active at a time.
- Each active device wishes to transmit J bits of data to the BS.
- Each device n has a unique signature sequence set \mathcal{S}_n = $\{\mathbf{s}_{n,1},\mathbf{s}_{n,2},\ldots,\mathbf{s}_{n,Q}\}$, where $\mathbf{s}_{n,q} \in \mathbb{C}^{L \times 1}, 1 \leq q \leq Q \triangleq 2^{J}$, and L is the signature sequence length.
- Channel $\sqrt{g_n}\mathbf{h}_n \in \mathbb{C}^{M \times 1}$ of user n includes both
 - \diamond large-scale fading component $q_n \geq 0$;
 - \diamond Rayleigh fading component $\mathbf{h}_n \in \mathbb{C}^{M \times 1}$ following the i.i.d. complex Gaussian distribution.
- Whether or not $s_{n,q}$ is transmitted is indicated as $\chi_{n,q} \in \{0,1\}$, which satisfies $\sum_{q=1}^{Q} \chi_{n,q} \in \{0,1\}$
 - $\sum_{q=1}^{Q} \chi_{n,q} = 1$ indicates that device n is active;
 - $\Rightarrow \sum_{q=1}^{Q} \chi_{n,q} = 0$ indicates that device n is inactive.
- Define
 - $\diamond \mathbf{S} = [\mathbf{S}_1, \dots, \mathbf{S}_N] \in \mathbb{C}^{L \times NQ}$, where $\mathbf{S}_n = [\mathbf{s}_{n,1}, \dots, \mathbf{s}_{n,Q}]$.
 - $\circ \Gamma^{1/2} = \text{diag}\{\mathbf{D}_1, \dots, \mathbf{D}_N\} \in \mathbb{C}^{NQ \times NQ}, \text{ where } \mathbf{D}_n =$ $\sqrt{g_n} \operatorname{diag} \{\chi_{n,1}, \ldots, \chi_{n,Q}\}.$
 - $\mathbf{A} = [\mathbf{H}_1^T, \dots, \mathbf{H}_N^T]^T \in \mathbb{C}^{NQ \times M}$, where $\mathbf{H}_n = [\mathbf{h}_n, \dots, \mathbf{h}_n]^T$.

Ziyue Wang^{*,§}, Zhilin Chen[†], Ya-Feng Liu[§], Foad Sohrabi[†], and Wei Yu[†]

*School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China [†] Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada [§]LSEC, ICMSEC, AMSS, Chinese Academy of Sciences, Beijing, China Email: wangziyue20@mails.ucas.ac.cn, {zchen, fsohrabi, weiyu}@ece.utoronto.ca, yafliu@lsec.cc.ac.cn

System Model (Cont.)
• The received signal
$$\mathbf{Y} \in \mathbb{C}^{L \times M}$$
 at the BS can be expressed as
 $\mathbf{Y} = \sum_{n=1}^{N} \sum_{q=1}^{Q} \chi_{n,q} \mathbf{s}_{n,q} \sqrt{g_n} \mathbf{h}_n^T + \mathbf{W}$
 $= \mathbf{S} \Gamma^{1/2} \mathbf{H} + \mathbf{W}$, (1)
where $\mathbf{W} \in \mathbb{C}^{L \times M}$ is the effective i.i.d. Gaussian noise with variance σ_{w}^2 .
• For given γ (diagonal entries of Γ), the *m*-th column of \mathbf{Y} can be seen as independent samples from a complex Gaussian distribution as
 $\mathbf{y}_m \sim \mathcal{CN} \left(0, \mathbf{S} \Gamma^{1/2} \mathbf{S}^H + \sigma_w^2 \mathbf{I} \right)$, (2)
where \mathbf{A} is a block diagonal matrix with each block being the all-one matrix $\mathbf{E} \in \mathbb{R}^{Q \times Q}$, and \mathbf{I} is an identity matrix.
• Since there is at most one non-zero entry in each diagonal block \mathbf{D}_n in $\Gamma^{1/2}$, the covariance matrix in (2) can be simplified as
 $\mathbf{S} \Gamma^{1/2} \mathbf{A} \Gamma^{1/2} \mathbf{S}^H + \sigma_w^2 \mathbf{I} = \mathbf{S} \Gamma \mathbf{S}^H + \sigma_w^2 \mathbf{I}$.
• The MLE problem can be formulated as
 $\min_{\mathbf{\gamma}} \log |\mathbf{S} \Gamma \mathbf{S}^H + \sigma_w^2 \mathbf{I}| + \Gamma \mathbf{V} \left((\mathbf{S} \Gamma \mathbf{S}^H + \sigma_w^2 \mathbf{I})^{-1} \hat{\mathbf{\Sigma}} \right)$ (3a)
 $\mathbf{s.t.} \quad \gamma \ge 0$. (3b)
• The sample covariance matrix $\hat{\mathbf{\Sigma}} = \mathbf{Y} \mathbf{Y}^H / M$ is computed by averaging over different antennas.
• The constraint $\gamma \ge 0$ is due to the fact that $\gamma_{n,q} = g_n \chi_{n,q} \ge 0$ for all n and q .
Problem Formulation and Analysis
• Let $f(\gamma)$ denote the objective function of problem (3). The gradient of $f(\gamma)$ with respect to $\gamma_{n,q}$ is
 $[\nabla f(\gamma)]_{n,q} = \mathbf{s}_{n,q}^H \boldsymbol{\Sigma}^{-1} \mathbf{s}_{n,q} - \mathbf{s}_{n,q}^H \boldsymbol{\Sigma}^{-1} \hat{\mathbf{\Sigma}} \mathbf{D}^{-1} \mathbf{s}_{n,q}$.
• The first-order (necessary) optimality condition of problem (3) is
 $[\nabla f(\gamma)]_{n,q} \begin{cases} = 0, & \text{if } \gamma_{n,q} = 0; & \forall q, n, \qquad (4)$
• Let $[]_+$ denote the projection operator onto the nonnegative orthant. Then (4) is equivalent to
 $[\gamma - \nabla f(\gamma)]_- - \gamma = \mathbf{0}$.

Active Set Algorithm

- To fully exploit the sparsity of the true solution of (3), the active set should
 - contain the indices of active sequences;
 - have the smallest possible cardinality.
- At the k-th iteration, the proposed selection strategy of the active set \mathcal{A}^k is

$$\mathcal{A}^{k} = \left\{ (i,q) \mid \gamma_{i,q}^{k} > \omega_{k} \text{ or } [\nabla f(\boldsymbol{\gamma}^{k})]_{i,q} < -\nu_{k} \right\},$$
(5)

where $\omega_k, \nu_k > 0$ and $\omega_k \downarrow 0$ and $\nu_k \downarrow 0$ (monotonically decrease and converge to zero).

• Once the active set \mathcal{A}^k is selected, we solve the following subproblem

min
$$\hat{f}(\boldsymbol{\gamma}_{\mathcal{A}^k})$$
 (6a)

s.t.
$$\boldsymbol{\gamma}_{\mathcal{A}^k} \ge \mathbf{0},$$
 (6b)

where $\gamma_{\mathcal{A}^k}$ is the subvector of γ indexed by \mathcal{A}^k and $\hat{f}(\gamma_{\mathcal{A}^k})$ is $f(\gamma)$ defined over $\gamma_{\mathcal{A}^k}$ with all the other variables fixed being zero.

- If the set \mathcal{A}^k in (6) is properly chosen, the dimension of problem (6) is potentially much smaller than that of problem (3).
- We apply the spectral PG algorithm [4] to solve the subproblem in (6) until $\boldsymbol{\gamma}_{\scriptscriptstyle Ak}^{k+1}$ satisfying

$$\left\| \left[\left[\boldsymbol{\gamma}_{\mathcal{A}^{k}}^{k+1} - \nabla \hat{f}(\boldsymbol{\gamma}_{\mathcal{A}^{k}}^{k+1}) \right]_{+} - \boldsymbol{\gamma}_{\mathcal{A}^{k}}^{k+1} \right] \right\| < \varepsilon_{k}, \tag{7}$$

where $\varepsilon_k > 0$ is the solution tolerance at the k-th iteration.

• The pseudocodes of the proposed algorithm are given in Algorithm 1

Algorithm 1	Proposed	active set	PG	algorithm	for	solving	problem	(3)
-------------	----------	------------	----	-----------	-----	---------	---------	-----

1: Initialize: $\gamma^0 = \mathbf{0}, k = 0, \{\omega_k, \nu_k, \varepsilon_k\}_{k>0}$, and $\varepsilon > 0$;

- 2: repeat
- 3: Select the active set \mathcal{A}^k according to (5);
- Apply the spectral PG algorithm [4] to solve the subproblem (6) until (7)is satisfied:
- 5: Set $k \leftarrow k+1$;
- 6: until $\|[\boldsymbol{\gamma}^k \nabla f(\boldsymbol{\gamma}^k)]_+ \boldsymbol{\gamma}^k\| < \varepsilon$
- 7: Output: γ^k

• Convergence property: For any given tolerance $\varepsilon > 0$, suppose that the parameters ω_k and ν_k in (5) satisfy $\omega_k \downarrow 0$ and $\nu_k \downarrow 0$ and the parameter ε_k in (7) satisfy $\lim_{k \to k} \varepsilon_k < \varepsilon$, then the active set PG Algorithm 1 will terminate within a finite number of iterations.

Simulation Results

- The power spectrum density of the background noise is -169 dBm/Hzover 10 MHz and the transmit power of each device is 25dBm;
- A single cell of radius 1000m, all devices are located in the cell edge, g_n 's are the same for all devices;
- All signature sequences from i.i.d. complex Gaussian distribution with zero mean and unit variance
- Parameters setting: M = 256, L = 150, and J = 1 (and thus Q = 2), K/N = 0.1 (10% of the total devices are active).
- Compare the proposed Algorithm 1 with
 - random CD algorithm in [1];
 - Ideal CD/PG algorithm: apply the CD/PG algorithm to solve problem (3) defined over the indices of active sequences;
- Parameters setting: $\omega_k = 10^{-6-k}$, $\varepsilon_k = \max\{10^{-k}, 0.8 * 10^{-3}\}$, $\nu_k = \min\left\{10^{4-k}, 0.5 \left|\min_{n,q}\left\{\left[\nabla f(\boldsymbol{\gamma}^k)\right]_{n,q}\right\}\right|\right\}, \ \varepsilon = 10^{-3}.$
- Average over 500 Monte-Carlo runs.

Left: Average ratio $|\mathcal{A}^k|/K$; Average number of iterations to terminate; Right: Average CPU time comparison.

- The ratio is in the interval [1.5, 2.5], and Algorithm 1 will generally terminate within 4-7 iterations.
- The proposed active set selection strategy (5) is very efficient.
- In CPU time, the proposed Algorithm 1 significantly outperforms the random CD algorithm, and even achieves slightly better efficiency than the ideal CD algorithm.

References

- [1] S. Haghighatshoar, P. Jung, and G. Caire, "Improved scaling law for activity detection in massive MIMO systems," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, June 2018, pp. 381-385
- 2] Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, "Covariance based joint activity and data detection for massive random access with massive MIMO," in Proc. IEEE Int. Conf. Commun. (ICC), Shanghai, China, May 2019, pp. 1–6.
- 3] Z. Chen, F. Sohrabi, Y.-F. Liu, and W. Yu, "Phase transition analysis for covariance based massive random access with massive MIMO," 2020. [Online]. Available: https://arxiv.org/abs/2003.04175
- [4] E. G. Birgin, J. M. Martínez, and M. Raydan, "Nonmonotone spectral projected gradient methods on convex sets," SIAM J. Optim., vol. 10, no. 4, pp. 1196–1211, 2000.