On the Choice of Sampling Rates in Multi-Rate Sampling

Esteban Selva, Apostolos Kountouris, Yves Louet

Orange Labs/IETR

DCC - March 23-26, 2021

Esteban Selva, Apostolos Kountouris, Yves Louet On the Choice of Sampling Rates in Multi-Rate Sampling

The Multi-Rate Sampler¹ (MRS) is a Compressed Sensing (CS) sampling scheme, based on *L* parallel ADC's sampling at different sub-Nyquist rates $\nu_i = 1/T_i$.

For an acquisition lasting Δ seconds: $M_i = \Delta \nu_i$ samples are taken at branch *i* (*N* samples for an hypothetical branch sampling at the Nyquist rate ν_{Nyq}).

¹Fleyer *et al.*, Multirate synchronous sampling of sparse **ETR** multiband signals. IEEE Trans. Signal Process., 2010. **D A B A E B A C A**

Equations of the Multi-Rate Sampler

Sampling the received signal X at branch i:

$$Z_i = F_i X. \tag{1}$$

 F_i : folding matrix of size $M_i \times N$.

Combining samples from all *L* branches:

$$Z = AX$$
, where $Z = \begin{bmatrix} Z_1 \\ \vdots \\ Z_L \end{bmatrix}$ and $A = \begin{bmatrix} F_1 \\ \vdots \\ F_L \end{bmatrix}$. (2)

Z: observation vector of size $M = \sum_{i=1}^{L} M_i < N$; A: measurement matrix of size $M \times N$. Our contribution: two theorems linking the rank of the MRS measurement matrix A and the $\{M_i\}_i$.

Theorem 1 (Measurement matrix rank upper-bound).

$$\operatorname{rank} A \leq M - (L - 1). \tag{3}$$

Theorem 2 (Equality case).

rank
$$A = M - (L - 1) \Leftrightarrow \{M_i\}_i$$
 is pairwise coprime.

(4)

Visualizing Theorem 1 and 2 on the MRS sampling grid

Consider the sampling grid depicting sampling instants during Δ seconds for L = 4 and $M_i = 5$, 4, 3 and 6 respectively:

Figure: The MRS sampling grid.

Only the samples contained within the dashed area provide new information, the other ones are redundant.

Simulation results: rank A is more relevant than M

The $\rho - \delta$ plane: Depending on the reduction in sampling rate (from the Nyquist rate) and the sparsity (number of non-zeros) in the original signal X, MRS equation can be solved for X (or not).

Figure: Phase transitions between successful recoveries (below lines) and failed recoveries (above lines). QFR = Quasi-Full Rank (coprime M_i 's), DR = Deficient Rank (non-coprime M_i 's).

MRS schemes with the similar matrix ranks have the same recovery performance (right), contrary to MRS schemes with similar numbers of measurements M (left).