

Encrypted Speech Recognition using deep polynomial networks

Austin Zhang, Dong Yu

Tencent AI Lab

Yifan Gong

Microsoft

- 1. Motivation
- 2. Encrypted Speech Recognition
- 3. Deep Polynomial Network
- 4. Experimental Results

Motivation

- State-of-the-art speech recognition services are running on cloud
- However, this will leak the client's private information to the server. e.g., medical/financial/enterprise/sensitive data

How to protect privacy? — A private-cloud solution

• Step 1: build a compliance boundary \rightarrow prevent data to leak out

How to protect privacy? — A private-cloud solution

• Step 2: move ASR service inside of compliance boundary

How to protect privacy? — A private-cloud solution

- issues 1: hard to deploy an update to the private cloud
- issues 2: costly for some small business/individual users
- issues 3: service provider may divulge the model and decoder to the service consumer who may resale to others

Encrypted Speech Recognition

What if we can encrypt the data

• Does this encryption exist?

 $\mathbf{E}^{-1}\Big[f\big(\mathbf{E}[x]\big)\Big]\equiv f(x)$ ightarrow An elegant solution for all above questions

$$x = \binom{7}{3}$$

$$\| f() = x_1 \times x_2$$

$$\| f(x) = 21$$

Proposed Framework

- Only AM scores are computed on server side.
- Original result guaranteed after decryption.
- No need to retrain the DNN on encrypted data.

It is extremely slow and not feasible before, until ...

Microsoft researchers smash homomorphic encryption speed barrier!

- But $f(\cdot)$ must be polynomial
- must be fixed point operation
- open source \rightarrow http://sealcrypto.org/

Deep Polynomial Network

Deep polynomial network

• unbounded polynomial approximation \rightarrow batch norm is a must.

Deep polynomial network

Dense layer (polynomial) $\mathbf{E}[\mathbf{W}]^{\mathsf{T}} \mathbf{E}[\mathbf{x}] \xrightarrow{\mathbf{E}^{-1}} \mathbf{W}^{\mathsf{T}} \mathbf{x}$

Convolution layer (polynomial)

Batch norm (merged to dense layer) $\mathbf{W}^{\mathsf{T}} \left(\gamma \frac{\mathbf{z} - \mu}{\sigma} + \beta \right) + \mathbf{b} = \mathbf{W}'^{\mathsf{T}} \mathbf{z} + \mathbf{b}'$

Max pooling layer(approximate)

$$\max(x_1, \dots x_n) = \lim_{d \to \infty} \left(\sum_{i=1}^n x_i^d\right)^{\frac{1}{d}}$$

low-bit model is critical for encryption speed

Experimental Results

WER in %		16-bit	8-bit	4-bit	2-bit
DNN	quantized train $ ightarrow$ polynomial	14.7% 15.8%	14.7% 15.8%	14.9% 16.1%	30.3% 30.8%
CNN	quantized train $ ightarrow$ polynomial	12.2% 13.5%	12.3% 13.6%	12.7% 14.0%	_

- with proper quantized training, 4-bit is sufficient.
- the polynomial networks increase WERs by a little as a cost.

WER and Latency on Cortana Task

			avg. latency per utterance		
	16-bit	4-bit	encryption	decryption	overall
DNN	12.9%	13.4%	-	-	177ms
polynomial	14.8%	15.5%	202ms	16ms	373ms

• a framework that enables privacy-preserving speech recognition

• a polynomial network that can make predictions over the encrypted speech in real time.

• with quantized training, 4-bit is sufficient for DNN/CNN.

Thanks. Questions?

• make the decoder also work on encrypted domain, so that we could run everything on the cloud.

• investigate training on encrypted data so that multiple parties (e.g.Microsoft, Google and Amazon) can encrypt and combine their data together to train models without sacrificing users privacy.