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Objective
Goal: Enable Fast Fourier Transform (FFT)
and fast filtering on large graphs.
Approach: Provide a general method for ap-
proximating the graph Fourier matrix U, giving
approximations Û that can be applied rapidly.

Graph Fourier transform

Let L ∈ Rn×n be the laplacian matrix of a graph,
and U ∈ Rn×n its eigenvectors matrix. Let x ∈ Rn

be a signal on the graph, and y ∈ Rn its Fourier
transform, we have:

y = UTx
x = Uy.

The matrix U being dense in general, the Fourier
transform costs O(n2) arithmetic operations.

Fast transforms

Many widely used transforms (classical Fourier,
wavelets, DCT, etc.) are paired with a fast algo-
rithm, exploiting the factorizability of the assoc-
ciated matrix A into sparse factors,

A =
J∏
j=1

Sj.
This factorizability is necessary and sufficient for a
fast linear algorithm to exist. In the case of the
classical Fourier transform, A can be factorized into
J = log2(n) factors, each having 2n nonzero entries.
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FAµST approximations

We approximate U using Flexible Approximate
MUlti-layer Sparse Transforms (FAµST) [1]:

U ≈ Û =
J∏
j=1

Sj,

allowing to compute approximate Fourier transfor-

mations (ÛTx and Ûy) in only O
( J∑
j=1
‖Sj‖0

)

arithmetic operations.

Optimization problems

We consider two optimization problems:
•Approximate factorization of U (giving Ûfact):

minimize
S1,...,SJ

1
2 ‖U− SJ . . .S1‖2

F

subject to Sj ∈ Sj, ∀j ∈ {1, . . ., J},
(P1)

•Approximate diagonalization of L (giving Ûdiag):
minimize
S1,...,SJ ,D

1
4

∥∥∥L− SJ. . .S1DST1 . . .STJ
∥∥∥2
F

subject to Sj ∈ Sj, ∀j ∈ {1, . . ., J}
D ∈ D,

(P2)

both tackled with the hierarchical strategy of [1].

Main Contribution
A flexible approach that allows to get FAµSTs with computational complexities O(nα), 1 < α < 2,
approximating well the Fourier transform of many classical families of graphs.

Experimental validation

Community graph Random sensor graph

Swiss roll graph Random ring graph

Figure 1: Different graphs used.
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Figure 2: Approximation error for (P2), various graphs of different dimen-
sions n ∈ {64, 128, 256, 512}, and FAµSTs of complexity O(n1.26). The
mean over 10 independent trials is shown.
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Filtering experiment

Clean signal
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Noisy signal, SNR=-4.30dB
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Filtered signal using U, SNR=3.40dB
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Filtered signal using Ûfact, SNR=3.08dB
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Figure 3: Example of filtering on the Minnesota road graph.
Filtering using U and filtering using a FAµST Ûfact (eight times
more computationally efficient) are shown.

σ = 0.3 σ = 0.4 σ = 0.5
Noisy 1.82 -0.68 -2.65
Filtered using U 5.11 4.57 3.89
Filtered using Ûdiag 4.04 3.62 3.11
Filtered using Ûfact 4.70 4.23 3.59

Table 1: Filtering results, the SNRs in dBs and in average over
100 independently drawn signals for each noise level are given.

Future work
•Designing a method that does not require a pre-
computed diagonalization of the Laplacian L.

• Imposing orthogonal FAµSTs, to ensure perfect
reconstruction (ÛTÛ = Id).
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