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Objective

Goal: Enable Fast Fourier Transform (FFT)
and fast filtering on large graphs.

Approach: Provide a general method for ap-
proximating the graph Fourier matrix U, giving
approximations U that can be applied rapidly:.

Graph Fourier transform

Let L € R"*" be the laplacian matrix of a graph,
and U € R"*" its eigenvectors matrix. Let x € R"
be a signal on the graph, and y € R" its Fourier
transform, we have:

y =U’x
x = Uy.

The matrix U being dense in general, the Fourier
transform costs O(n?) arithmetic operations.

Fast transforms

Many widely used transforms (classical Fourier,
wavelets, DCT, etc.) are paired with a fast algo-
rithm, exploiting the factorizability of the assoc-
ciated matrix A into sparse factors,

J
A=1]]S.
j=1

I'his factorizability is necessary and sufficient for a
fast linear algorithm to exist. In the case of the
classical Fourier transform, A can be factorized into
J = logy(n) factors, each having 2n nonzero entries.
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FAuST approximations Optimization problems

We approximate U using Flexible Approximate We consider two optimization problems:

MUIti-layer Sparse Transforms (FApST) [1]: « Approximate factorization of U (giving IAJfaCt):

Ce . 2
. J mgingize 5 |[U =S, Sl (P1)
U ~ U — H Sj, subject to SjGS]’, Vjé{l,...,]},

« Approximate diagonalization of L (giving ﬂdiag):
minimize HL —S,...5,DS; .. S;H?

S,...S,D
subject to  S; € S;, Vi e {l,...,J} (P2)
D eD,

both tackled with the hierarchical strategy of [1].

allowing to compute approximate Fourier transfor-
J

mations (UTx and Uy) in only (’)(Z ||SjHo)
j=1

arithmetic operations.

Main Contribution

A flexible approach that allows to get FAuSTs with computational complexities O(n®), 1 < a < 2,
approximating well the Fourier transform of many classical families of graphs.

Experimental validation

Community graph Random sensor graph
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Figure 2: Approximation error for (P2), various graphs of different dimen-
sions n € {64,128,256,512}, and FAuSTs of complexity O(n'®). The

mean over 10 independent trials is shown.

Figure 1: Different graphs used.
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Filtering experiment

Noisy signal, SNR=-4.30dB

Clean signal

Filtered signal using U, SNR=3.40dB
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Figure 3: Example of filtering on the Minnesota road graph.

Filtering using U and filtering using a FAuST Utact (eight times

more computationally efficient) are shown.

oc=030c=040=0.5

Noisy 1.82  -0.68 -2.65
Filtered using U 5.11 457  3.89
Filtered using U, 404 362 311
Filtered using Up,e 470 423  3.59

Table 1: Filtering results, the SNRs in dBs and in average over

100 independently drawn signals for each noise level are given.

Future work

» Designing a method that does not require a pre-
computed diagonalization of the Laplacian L.

» Imposing orthogonal FA 15Ts, to ensure perfect
reconstruction (UTU = Id).
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