

Fast Keypoint Detection in Video Sequences

Luca Baroffio, Matteo Cesana, Alessandro Redondi, Marco Tagliasacchi, Stefano Tubaro

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Italy

Local Visual Features

- Starting point for many computer vision tasks
 - Object recognition
 - Content-based retrieval
 - Image registration
- Two-steps approach:
 - First step: keypoint detection (corners, blobs, etc.)
 - Second step: descriptor extraction (SIFT, SURF, BRISK, etc.)

Local features detection in video

Most algorithms are tailored to still images

- For video, past literature targets the identification of keypoints that are stable across time
 - Stable features are key to object tracking, event identification and video calibration (main goal: application accuracy)
 - Stable features improve the efficiency of coding architectures exploiting the temporal redundancy (main goal: minimize bandwidth)

We target computational complexity

Low power devices (smartphones, embedded systems, Visual Sensor Networks) require the process of features detection to be both fast and accurate

Fast extraction from video

Baseline approach: apply a feature detector on each frame \mathcal{I}_n of a video sequence

- Inefficient from a computational point of view!
- Temporal redundancy is not exploited!

- Our approach: apply the feature detector only in regions of \mathcal{I}_n that are sufficiently different from \mathcal{I}_{n-1}
 - Compute a **detection mask** to identify such regions
 - **Reuse** keypoints from \mathcal{I}_{n-1} outside those regions (keypoint propagation from \mathcal{I}_{n-1} to \mathcal{I}_n)

Fast extraction from video

Formally:

GreenEves

- Let \mathcal{D}_n be the set of features extracted from frame \mathcal{I}_n (size $N_x imes N_y$)
- Let $d_{n,i} \in \mathcal{D}_n$ be the i-th features of the set, computed in keypoint location $\mathbf{p}_{n,i}$
- Let $\mathcal{M}_n \in \{0,1\}^{N_x \times N_y}$ be a binary detection mask defining the regions of the frame where the detector should be applied

$$\mathcal{D}_n = \{ d_{n,i} : \mathcal{M}_n(\mathbf{p}_{n,i}) = 1 \cup d_{n-1,j} : \mathcal{M}_n(\mathbf{p}_{n-1,j}) = 0 \}$$
New features
Propagated features

ICASSP 2016 March 2016

Detection Mask

• How to compute the detection mask \mathcal{M}_n ?

Need for a computationally efficient algorithm!

• We propose two alternatives:

- Intensity Difference Detection mask
- Keypoint Binning Detection Mask

Intensity Difference Detection Mask

- Idea: apply a detection only to regions that vary sufficiently across contiguous frames
- To this end, compute the absolute difference between downsampled representations of two consecutive frames
 - Already computed by the scale-space pyramid!
- If the difference in a given region is greater than a threshold, perform detection in such a region

$$\mathcal{M}'_{n,o}(k,l) = \begin{cases} 1 & \text{if } |\mathcal{L}_{n,o}(k,l) - \mathcal{L}_{n-1,o}(k,l)| \leq \mathcal{T}_I \\ 0 & \text{if } |\mathcal{L}_{n,o}(k,l) - \mathcal{L}_{n-1,o}(k,l)| > \mathcal{T}_I, \end{cases}$$

Final mask obtained through upsampling

Intensity Difference Detection Mask

- Idea: apply a detection only to regions where features have been found in previous frames
- To this end, compute a 2D spatial histogram of keypoints location
- If the number of keypoints in a spatial bin (of the previous frame) is greater than a threshold, perform detection in such a region

$$\mathcal{M}'_{n}(k,l) = \begin{cases} 1 & \text{if } \mathcal{M}''_{n}(k,l) \geq \mathcal{T}_{H} \\ 0 & \text{if } \mathcal{M}''_{n}(k,l) < \mathcal{T}_{H}, \end{cases}$$

Idea: apply a detector only to regions of the image where features have been found in previous frames.

Idea: apply a detector only to regions of the image where at least N features have been found in previous frames.

Idea: apply a detector only to regions of the image where features have been found in previous frames.

Idea: apply a detector only to regions of the image where features have been found in previous frames.

Experiments

- Datasets:
 - Stanford MAR dataset (4 sequences of cd covers under different imaging conditions)
 - Rome Landmark dataset (10 sequences of different landmarks in Rome)
 - Stanford MAR multiple object (4 sequences of different objects)
- Selected local features: BRISK (but our methods is generally appliable)
- Depending on the dataset, different accuracy measures:
 - Matches-post-Ransac (MPR) for Stanford MAR dataset
 - Mean of Average Precision (MAP) for Rome Landmark dataset
 - Combined detection and tracking accuracy for Stanford MAR multiple objects
- Complexity is measured by means of the required CPU time

Comparison with baselines

GreenEyes...

ICASSP 2016 March 2016

Results – Stanford MAR

Results – Rome Landmark Dataset

Results – Stanford Multiple Object

Conclusions

- Up to 35/40 % reduction in terms of computational complexity without significantly reducing visual task accuracy
- Higher frame rates / lower power consumption on low-power devices (smartphones, embedded systems)

Thank you!

