A PROBABILISTIC INTERFERENCE DISTRIBUTION MODEL ENCOMPASSING **CELLULAR LOS AND NLOS MMWAVE PROPAGATION**

Hussain Elkotby and Mai Vu

Introduction and Motivation

Samsung 5G Rainbow Requirements

- Scarce spectrum at the microwave band.
- Migration to mmWave (massive increase in bandwidth) • Smaller cell radii leading to dense network deployments.
- Cellular networks are interference rather than noise limited.

mmWave Channel Model and Features

• Channel propagation model:

$$\mathbf{H} = \sqrt{l(r)} \widetilde{\mathbf{H}}$$

- Small-scale fading: non-parametric or parametric models.
- Probabilistic large-scale fading model

$$l(r) = \mathbb{B}(p(r)) L_l \beta_l r^{-\alpha_l} + (1 - \mathbb{B}(p(r))) L_n \beta_n r^{-\alpha_n}$$

$\mathbb{B}(\cdot)$: Bernoulli random variable, $L_i \sim \mathcal{N}(0, \sigma_i) \forall i \in \{l, n\}$

Floating intercept model: β_i floating intercept, α_i linear slope β_i is free space path loss Close-in model:

- α_i is path loss exponent
- The probability that a link of length r is I \cap S

$$p(r) = \left[\min\left(\frac{r_{BP}}{r}, 1\right)\left(1 - e^{-\frac{r}{\alpha}}\right) + e^{-\frac{r}{\alpha}}\right]^2$$

r_{RP} : Breakpoint distance, α : decay parameter

• Separate measurements/models for LOS and NLOS.

Cellular Model based on Stochastic Geometry

- A multi-antenna cellular system.
- No intra-cell interference.
- Interferers distributed outside a cell of nominal radius R_0 .
- LOS interferers distributed as a (p.p.p. Φ_L with intensity $p(r)\lambda_1$.
- NLOS interferers distributed as a p.p.p. Φ_N with intensity $(1-p(r))\lambda_1.$

Ericsson Mobility Report, 2015

Interference Modeling

• The interference vector \mathbf{v}_0 at a UE at distance D from BS:

$$\mathbf{v}_0 = \sum_{z_k} \mathbf{H}_k \mathbf{w}_k x_k = \sum_{z_k} \sqrt{P_k l(\|\mathbf{z}_k - \mathbf{t}_0\|_2)} \tilde{\mathbf{h}}_k U_k$$

t₀: the 2-D location of the considered UE

- For a fixed fading and spatial realization, \mathbf{v}_0 is $\mathcal{CN}(\mathbf{0}, \mathbf{Q}_0)$.
- The covariance matrix \mathbf{Q}_0 is random.
- Diagonal elements q_0 represent interference power.
- Assuming LOS probability independence, we separate the LOS and NLOS interference power modeling

$$q_0 = \sum_{z_k \in \Phi_L} l(\|\mathbf{z}_k - \mathbf{t}_0\|_2) g_k P_k + \sum_{z_k \in \Phi_N} l(\|\mathbf{z}_k - \mathbf{t}_0\|_2) g_k P_k$$

 g_k : the small-scale fading power gain from k^{th} interferer.

 Analytical expressions available for LOS and NLOS first two moments when the elements of $\tilde{\mathbf{H}}$ are i.i.d. $\mathcal{CN}(0,1)$.

Interference Power Candidate Distributions

- Consider 2-parameter candidates {Gamma (G), Inverse Gaussian (IG), and Inverse Weibull (IW).
 - > Characterized by shape and scale parameters.
 - \succ Few parameters to estimate.

LOS Model as a Mixed Distribution

- The probability p(r) is a decreasing function of r. Only interferers in a limited area contribute to LOS part. Consider probability density function (PDF) as

$$\gamma_G(D) = \begin{cases} 0\\ \widetilde{\gamma}_G(D) \end{cases}$$

 $\tilde{\gamma}_G(D)$: Gamma distributed random variable

NLOS Model as a Mixture Distribution

$$f_Y(y|\theta) = w_1 f_{\gamma_I}$$

- After moment matching, only 3 parameters to estimate: \succ The distribution mixing weight, and
 - \succ Shape parameter in each individual distribution.

 \mathbf{w}_k : unit-norm beamforming vector independent of \mathbf{H}_k $x_k = \sqrt{P_k} U_k$ is the transmitted signal with power P_k

- with probability $p_0(D)$
- with probability $1 p_0(D)$
- $p_0(D)$: probability that LOS interference power is 0.

• The increasing function 1 - p(r) suggests very low probability of NLOS interference power components around 0. Consider as a weighted mixture of IG and IW distributions.

 $_{IG}(y|\lambda) + w_2 f_{\gamma_{IW}}(y|c)$

Models Parameters Estimation Approaches:

- Gamma moment matching (MM): \succ Match the first two moments analytically.
- Gamma Maximum Likelihood Estimation (MLE):
- Mixture distribution MLE:
 - > Match the first moment, then develop an Expectation Maximization algorithm to estimate the parameters.

Interference Models Evaluation

Visual verification:

3.5, $\sigma_l = 4$ dB, ($P_{max} = 30$ dBm, D = 75m).

Kullback–Leibler (KL) divergence metric:

Conclusion and Future Work

- best and most accurate fit.
- Future work:
 - \succ Functional fitting as a simple way of modeling the mmWave interference directly.
 - > Study models fitness under mmWave parametric channel model.

Department of Electrical and Computer Engineering

• LOS MM model represents the simplest approach but fails to capture interference at high shadowing. • Gamma MLE provides a good model for LOS interference power, but fails to model NLOS interference. • Mixture MLE NLOS interference power model offers the