

An Investigation of Adaptation Techniques for Building Acoustic Models for Hearing-impaired Children in a CAPT Application

Yingke Zhu Brian Mak {yzhuav, mak} @cse.ust.hk

Outline

- Computer assisted pronunciation training system
- Task description
- Adaptation techniques
 - KL divergence regularization
 - Linear input network
 - Learning hidden-unit contributions (LHUC)
- Evaluation in the real system

CAPT system

- Android-based computer-assisted pronunciation training application developed for the local hearing-impaired (HI) children.
- Contains listening and speaking exercises of around 400 Cantonese words.
- Cantonese

Each character is a syllable.

19 initial consonants 18 vowels and 6 ending consonants

CAPT system

Exercise

Tell the difference between two very similar words that differ only in their initial consonants.

/tɒu/ → [kɒu] 豆(bean) 狗(dog)

Assessment Phoneme verification problem

Task Description

Aim

Score the pronunciation of the initial phone in Cantonese words.

Acoustic model

Modeling Cantonese monophones

Performance metrics

PER: overall phone error rate

ICER: initial consonant error rate

Acoustic Model

Target user

Hearing impaired(HI) children in Hong Kong

Aged between 6 to 12

Problem

Lack of data

1 hour of Cantonese speech from 36 HI children

Strategy

Training — NH adults acoustic model

Sufficient normal hearing adults speech data

Group Adaptation — HI children acoustic model

HI children speech data

Acoustic Model

Training: NH adult model

 35 hours speech data from 166 normal hearing adults

Adaptation: HI children model

1 hours speech data from
36 hearing impaired children

Data set	# Speakers	Amount
Adaptation	18	0.51 h
Dev	9	0.22 h
Test	9	0.27 h

NH Adult Acoustic Model

Results on two test sets

Test Set	Overall	Consonant	Vowel	ICER
	PER (%)	PER (%)	PER (%)	(%)
NH adults	31.1	33.5	27.6	21.6
HI children	73.0	65.6	83.7	58.4

- The performance of NH adult acoustic model on HI children test set has a significant drop.
- There's a mismatch between two speech corpus.

Adults - Children

Normal hearing - Hearing impaired

Adaptation techniques

- KL divergence regularization
- Linear input network
- Learning hidden-unit contributions

KL divergence regularization

DNN training – optimization criterion

$$\overline{D} = \frac{1}{N} \sum_{t=1}^{N} D(\mathbf{x}_t) = \frac{1}{N} \sum_{t=1}^{N} \sum_{y=1}^{S} \underline{\widetilde{p}(y|\mathbf{x}_t)} \log p(y|\mathbf{x}_t)$$
$$= \begin{cases} 1 & \text{if } y = s_t \\ 0 & \text{otherwise} \end{cases}$$

KLD adaptation – regularized optimization criterion

$$\hat{D} = (1 - \rho)\overline{D} + \rho \cdot \frac{1}{N} \sum_{t=1}^{N} \sum_{y=1}^{S} p^{SI}(y|\mathbf{x}_t) \log p(y|\mathbf{x}_t)$$

Implementation

$$\hat{D} = \frac{1}{N} \sum_{t=1}^{N} \sum_{y=1}^{S} \frac{\hat{p}(y|\mathbf{x}_t) \log p(y|\mathbf{x}_t)}{1 - \rho \cdot \widetilde{p}(y|\mathbf{x}_t) + \rho \cdot p^{SI}(y|\mathbf{x}_t)}$$

Conventional BP algorithm

KL divergence regularization

Linear input network

LIN

#Parameters: $ND \times (ND+1)$

• LIN-Nblock

#Parameters: ND \times (D+1)

Linear input network

Results

Adaptation	Overall PER (%)	Consonant PER (%)	Vowel PER (%)	ICER (%)
Baseline	73.0	65.6	83.7	58.4
LIN	67.8	60.9	77.7	52.9
LIN-Nblock	68.0	60.9	78.3	53.3
LIN + bias	67.5	60.3	77.8	52.5
LIN-Nblock + bias	66.4	60.1	75.4	52.5

Learning hidden-unit contributions (LHUC)

Learning hidden-unit contributions (LHUC)

Adaptation results summarization

Adaptation	Overall PER (%)	Consonant PER (%)	Vowel PER (%)	ICER (%)
Baseline	73.0	65.6	83.7	58.4
$\frac{\text{KLD} (\rho = 0.5)}{}$	65.8	57.7	77.4	49.5
LIN-Nblock + bias	66.4	60.1	75.4	52.5
LHUC	66.7	60.9	75.1	52.8
KLD+LHUC	65.4	58.9	74.8	51.1
KLD+LIN-Nblock+bias	65.1	57.5	76.0	49.5
KLD+LIN-Nblock	65.0	57.3	76.1	49.1

Evaluation in the real system

 Assessment performance is reported in terms of equal error rate (EER).

Conclusion

- We investigated various speaker adaptation techniques for group adaptation: adapting an NH adults acoustic model to work force HI children in a mobile CAPT application.
- The major challenges are:
 - the acoustic characteristics of HI children speech are very different from those of NH speakers in the original model
 - the amount of adaptation data is very limited
- We investigated KLD regularization, LHUC, LIN, and their combinations. Among the three methods, if they were applied alone, KLD regularization gave the best performance.
- Further improvement could be achieved from the joint adaptation of KLD and LIN-Nblock, reducing PER and ICER by a relative 11% and 16% respectively.

Q & A