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Introduction
Our Approach

Results

Outline

1 Introduction
Conduction velocity in surface electromyography (sEMG)
Equivalent to Time-Varying Delay Estimation

2 Estimating a Delay using All-Pass Filters
Shifting by a constant delay =⇒ All-pass filtering
Time-varying delay obtained from Local All-Pass (LAP) filters
Estimate delay common to a group of signals ⇒ Common LAP

3 Evaluation Results
Synthetic sEMG data
Experimental data =⇒ High density sEMG recordings

4 Conclusions
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Conduction Velocity
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Conduction Velocity

Tendon Region

Tendon Region

Innervation
Zone

Motor Unit
Action Potential

# Important factor in the study of muscle pathology, fatigue or pain
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Estimating Conduction Velocity from sEMG

Estimate conduction velocity =⇒ Delay estimation
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Estimating Conduction Velocity from sEMG

Estimate conduction velocity =⇒ Delay estimation

Tendon Region

Tendon Region

Innervation
Zone

Electrodes

Using high-density electrode arrays:

Measure the propagation of the

signal

Difficulties:

sEMG contains many MUAPs
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Estimate conduction velocity =⇒ Delay estimation

Tendon Region
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Innervation
Zone

Electrodes

Using high-density electrode arrays:

Measure the propagation of the
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Non-constant MUAP shape

0 5 10 15 20 25 30 35
Time (ms)

1

2

3

4

C
ha

nn
el

 N
o.

Gilliam et al. Delay Estimation using CLAP filters applied to EMG ICASSP 20th April 2018 4 / 20



Introduction
Our Approach

Results

Conduction Velocity
Estimation Problem

Estimating Conduction Velocity from sEMG
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Using high-density electrode arrays:

Measure the propagation of the
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Estimate conduction velocity =⇒ Delay estimation

Tendon Region
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Innervation
Zone

Electrodes

Using high-density electrode arrays:

Measure the propagation of the
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# Time-varying delay estimation with unknown waveforms
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Estimation Problem

Time-Varying Delay Estimation

The problem:

Multi-channel recordings:







g1(t) = f(t) + e1(t)

g2(t) = f
(
t− τ(t)

)
+ e2(t)

g3(t) = f
(
t− 2 τ(t)

)
+ e3(t)

...

gN (t) = f
(
t− (N − 1)τ(t)

)
+ eN (t)

where

gn(t) is the signal from the nth electrode

f(t) is the signal of interest

τ(t) is the time-varying delay

en(t) is Gaussian noise
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Time-Varying Delay Estimation

The problem:

Multi-channel recordings:







g1(t) = f(t) + e1(t)

g2(t) = f
(
t− τ(t)

)
+ e2(t)

g3(t) = f
(
t− 2 τ(t)

)
+ e3(t)

...

gN (t) = f
(
t− (N − 1)τ(t)

)
+ eN (t)

Our Approach:

Common Local All-Pass Filter algorithm:
# Robust and very accurate
# Automatically identify Innervation Zone
# Uses all of the electrode signals
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Shifting = Filtering
LAP
Common LAP

All-Pass Filter Framework - Concept 1

Constant delay τ =⇒ Filtering Signal 1 with All-Pass Filter h

Time Delay

] kh[=

All-Pass

*

Signal,Signal, 2x 1x
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All-Pass Filter Framework - Concept 1

Constant delay τ =⇒ Filtering Signal 1 with All-Pass Filter h

Time Delay

] kh[=

All-Pass

*

Signal,Signal, 2x 1x

Shifting in Frequency:

X2(ω) = X1(ω) e
−jτω

︸ ︷︷ ︸

= Filtering Operation

Define Filter
==============⇒ H(ω) = e−jτω

︸ ︷︷ ︸

= All-Pass
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All-Pass Filter Framework - Concept 1

Constant delay τ =⇒ Filtering Signal 1 with All-Pass Filter h

Time Delay

] kh[=

All-Pass

*

Signal,Signal, 2x 1x

# Estimation of All-Pass Filter = Estimation of time delay
# No assumption on the size of the delay
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Shifting = Filtering
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All-Pass Filter Framework - Concept 2

Any all-pass filter has a rational structure =⇒ H(ω) =
P (ω)

P (−ω)
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Shifting = Filtering
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Common LAP

All-Pass Filter Framework - Concept 2

Any all-pass filter has a rational structure =⇒ H(ω) =
P (ω)

P (−ω)

] kh[=

All-Pass

*

Signal,Signal, 2x 1x

Filter

] kp[=

Forward

*

Signal,Signal, 2x 1xFilter

] -kp[

Backward

*

Filter

# Linearise All-Pass Filtering
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All-Pass Filter Framework - Concept 3

Approximate p with a few known real filters

papp[k] =
L−1∑

l=0

clpl[k] =⇒ Estimate coefficients cl
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Approximate p with a few known real filters

papp[k] =
L−1∑

l=0

clpl[k] =⇒ Estimate coefficients cl

A good choice of filters =⇒ Span the derivatives of an isotropic function

*T. Blu, P. Moulin & C. Gilliam, “Approximation order of the LAP optical flow algorithm”, Proc IEEE Int. Conf. Image Processing, Québec city,
Canada, September 27–30 2015.
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All-Pass Filter Framework - Concept 3

Approximate p with a few known real filters

papp[k] =
L−1∑

l=0

clpl[k] =⇒ Estimate coefficients cl

A good choice of filters =⇒ Span the derivatives of an isotropic function

p0[k] = exp

(

−
k2

2σ2

)

where σ =
R

2
− 0.2

First derivatives =⇒ p1[k] = k p0[k]

# Filters are scalable =⇒ Estimate both large and small delays

# Linked to R, the half support of the filters

*T. Blu, P. Moulin & C. Gilliam, “Approximation order of the LAP optical flow algorithm”, Proc IEEE Int. Conf. Image Processing, Québec city,
Canada, September 27–30 2015.
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All-Pass Filter Framework - Concept 3

Approximate p with a few known real filters

papp[k] =
L−1∑

l=0

clpl[k] =⇒ Estimate coefficients cl

Finally....

Set c0 = 1 =⇒ Need to estimate 1 coefficients

# Solve using Least Mean Squares =⇒ Linear system of equations

min
{cl}

∑

k∈Z

∣
∣
∣papp[k] ∗ x1[k]− papp[−k] ∗ x2[k]

∣
∣
∣

2

# Extract estimate of delay from All-Pass Filter
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Local All-Pass (LAP) Algorithm

Central Assumption:

Assume delay is constant within a local region ⇒ Local All-Pass Filters

Signal,Signal, 2x 1x

Filter
Local All-Pass

At central sample =⇒ Estimate local all-pass filter

# Extract delay from the estimate of the filter
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Local All-Pass (LAP) Algorithm

Central Assumption:

Assume delay is constant within a local region ⇒ Local All-Pass Filters

Signal,Signal, 2x 1x

Filter
Local All-Pass

Move region (one sample change) =⇒ Estimate new all-pass filter

Very efficient to solve =⇒ Convolutions and fixed-point multiplication
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Central Assumption:

Assume delay is constant within a local region ⇒ Local All-Pass Filters

Signal,Signal, 2x 1x

Filter
Local All-Pass

Move region (one sample change) =⇒ Estimate new all-pass filter

Very efficient to solve =⇒ Convolutions and fixed-point multiplication

# Size of the region = R, half support of the filters
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Shifting = Filtering
LAP
Common LAP

Local All-Pass (LAP) Algorithm

Central Assumption:

Assume delay is constant within a local region ⇒ Local All-Pass Filters

Signal,Signal, 2x 1x

Filter
Local All-Pass

End Result:

# Per sample estimate of the time-varying delay
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Shifting = Filtering
LAP
Common LAP

Estimating a Common Time-Varying Delay

The ensemble of signals:

x1(t) = f(t)

x2(t) = f
(
t− τ(t)

)

x3(t) = f
(
t− 2τ(t)

)

...

xN (t) = f
(
t− (N − 1)τ(t)

)







Characterised by time varying delay
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(
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)

x3(t) = f
(
t− 2τ(t)

)

...

xN (t) = f
(
t− (N − 1)τ(t)

)







=====⇒







x2(t) = x1

(
t− τ(t)

)

x3(t) = x2

(
t− τ(t)

)

...

xN (t) = xN−1

(
t− τ(t)

)
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The ensemble of signals:

x1(t) = f(t)

x2(t) = f
(
t− τ(t)

)

x3(t) = f
(
t− 2τ(t)

)

...

xN (t) = f
(
t− (N − 1)τ(t)

)







=====⇒







x2(t) = x1

(
t− τ(t)

)

x3(t) = x2

(
t− τ(t)

)

...

xN (t) = xN−1

(
t− τ(t)

)

Key Observation:

Same time-varying delay τ(t) between each pair of signals
# Adapt LAP to multiple signals
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Common LAP

Common Local All-Pass Filter

Our approach:

Common
All-Pass Filter

Signal 1

Signal 2

Signal 3

Signal 4

Signal 2

Signal 3

Signal 4

Signal 5

Time Time

Within local regions =⇒ Estimate a common All-Pass Filter
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Common Local All-Pass Filter

Our approach:

Common
All-Pass Filter

Signal 1

Signal 2

Signal 3

Signal 4

Signal 2

Signal 3

Signal 4

Signal 5

Time Time

Common Local All-Pass (CLAP) Algorithm

Estimate a single time-varying delay common across a group of signals
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Multi-Scale Framework

Iterative framework:

CLAP Algorithm

Post-Processing
Delay

+τ

Alignment

i

R

Signal Group 2 Signal Group 1

^

τi +1

^

∆τ
^

Estimate faster variations in the delay =⇒ Change R (size of filters)
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Multi-Scale Framework

Iterative framework:

CLAP Algorithm

Post-Processing
Delay

+τ

Alignment

i

R

Signal Group 2 Signal Group 1

^

τi +1

^

∆τ
^

Alignment ⇒ Warp signals using delay estimate

Post-Processing

{

Inpainting =⇒ Remove erroneous delay estimates

Smooth estimate using Gaussian filtering
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Shifting = Filtering
LAP
Common LAP

Application to sEMG

Step 1:

sEMG signals likely to suffer from a common source of corruption across
all channels

Use single differential of signals: xn(t) = gn+1(t)− gn(t)
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Application to sEMG

Step 2:

Automatic identification of the Innervation Zone

Innervation Zone

Point where motor neurons innervate the muscle fibres
# MUAPs propagate out from zone to tendons
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Shifting = Filtering
LAP
Common LAP

Application to sEMG

Step 2:

Automatic identification of the Innervation Zone

Innervation Zone

Point where motor neurons innervate the muscle fibres
# MUAPs propagate out from zone to tendons

xn−2 = xn−1(t+ τ(t))

xn−1 = xn(t+ τ(t))

xn −→ Innervation Zone

xn+1 = xn(t− τ(t))

xn+2 = xn+1(t− τ(t))
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Shifting = Filtering
LAP
Common LAP

Application to sEMG

Step 2:

Automatic identification of the Innervation Zone

Innervation Zone

Point where motor neurons innervate the muscle fibres
# MUAPs propagate out from zone to tendons

Solution:

Run LAP pair-wise on adjacent signals &
calculate mean delay

Find point where the sign of the delay changes

Reverse order of processing for signals above
the zone
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Synthetic Data
Experimental Data

Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.
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Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

1st Channel:
White Gaussian noise
filtered using FIR

filter with EMG-like
spectral properties[2].

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.
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Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

1st Channel:
White Gaussian noise
filtered using FIR

filter with EMG-like
spectral properties[2].

⇒

Generate other
channels via

interpolation using
τ(t)

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.
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Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

1st Channel:
White Gaussian noise
filtered using FIR

filter with EMG-like
spectral properties[2].

⇒

Generate other
channels via

interpolation using
τ(t)

⇒

Each channel
corrupted by Gaussian

noise
(shaped by FIR filter
to simulate sEMG
acquisition device)

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.
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Synthetic Data
Experimental Data

Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

1st Channel:
White Gaussian noise
filtered using FIR

filter with EMG-like
spectral properties[2].

⇒

Generate other
channels via

interpolation using
τ(t)

⇒

Each channel
corrupted by Gaussian

noise
(shaped by FIR filter
to simulate sEMG
acquisition device)

Model of Conductance Velocity:

CV(t) = 4 + 2 sin(2π 0.2t/Fs)

where Fs = 2048Hz is the sampling frequency

Biologically plausible =⇒ Velocities range between 2m/s to 6m/s

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.
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Synthetic Data
Experimental Data

Evaluation on Synthetic sEMG Data

Synthetic Data Model[1]:

1st Channel:
White Gaussian noise
filtered using FIR

filter with EMG-like
spectral properties[2].

⇒

Generate other
channels via

interpolation using
τ(t)

⇒

Each channel
corrupted by Gaussian

noise
(shaped by FIR filter
to simulate sEMG
acquisition device)

Model of Conductance Velocity:

CV(t) = 4 + 2 sin(2π 0.2t/Fs)

where Fs = 2048Hz is the sampling frequency

Biologically plausible =⇒ Velocities range between 2m/s to 6m/s

# τ(t) = Fs

∆e

CV(t)
where ∆e = 5mm is the inter electrode distance

[1] P. Ravier el al., ‘Time-varying delay estimators for measuring muscle fiber conduction velocity from the surface eletromyogram’, Biomed. Signal
Process. Control, 2015.

[2] E. Shwedyk el al., ‘A nonstationary model for the electromyogram’, IEEE Trans. Biomed. Eng., 1977.

Gilliam et al. Delay Estimation using CLAP filters applied to EMG ICASSP 20th April 2018 14 / 20



Introduction
Our Approach

Results

Synthetic Data
Experimental Data

Evaluation on Synthetic sEMG Data - Results

Noiseless Data:
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Estimation using 6 signals and window size of 0.25 s (512 samples)

cohF = Fourier Phase Coherency (same window size)
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SNR = 10 dB:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (seconds)

-1

0

1

2

3

4

5

6

D
e

la
y 

(s
a

m
p

le
s)

Original
CLAP
cohF

Estimation using 6 signals and window size of 0.25 s (512 samples)

cohF = Fourier Phase Coherency (same window size)
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Experimental Data

Synthetic sEMG Data - Varying Number of Signals
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SNR = 30 dB

0 5 10 15 20
Number of Signals

0

0.1

0.2

0.3

0.4

0.5

E
st

im
at

io
n 

E
rr

or
 (

sa
m

pl
es

) CLAP
cohF

SNR = 10 dB

Error bars = 5th and 95th quantiles
Values averaged over 100 realisations of the data
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Evaluation on Experimental HD-sEMG Data

Electrode Array
Example of set up

4 × 16 HD-sEMG array placed on biceps brachii (parallel to muscle fibres)

Participants pull on fixed cable ⇒ 40% & 80% max voluntary contractions
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Synthetic Data
Experimental Data

Evaluation on Experimental HD-sEMG Data

Electrode Array
Example of set up

Validate CLAP algorithm performance using surrogate data

Surrogates generated by iterative amplitude adjusted FFT
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Synthetic Data
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Evaluation on Experimental HD-sEMG Data - Results

Subject MVC

Surrogates Data

Avg τ̄ Var τ̄ τ̄ CV

(m/s)

40% -0.001 0.000 2.503 4.89
1

80% -0.003 0.000 2.363 5.20

40% -0.001 0.000 2.320 5.28
2

80% 0.000 0.002 2.399 5.11

40% 0.001 0.000 1.690 7.26
3

80% -0.002 0.001 1.726 7.13

τ̄ = Time averaged delay and MVC = Maximum Voluntary Contraction

100 surrogates per dataset
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Introduction
Our Approach

Results

Synthetic Data
Experimental Data

Evaluation on Experimental HD-sEMG Data - Results

Subject MVC

Surrogates Data

Avg τ̄ Var τ̄ τ̄ CV Change CV

(m/s) (m/s2)

40% -0.001 0.000 2.503 4.89 -0.001
1

80% -0.003 0.000 2.363 5.20 -0.029

40% -0.001 0.000 2.320 5.28 -0.005
2

80% 0.000 0.002 2.399 5.11 -0.017

40% 0.001 0.000 1.690 7.26 -0.001
3

80% -0.002 0.001 1.726 7.13 -0.017

τ̄ = Time averaged delay and MVC = Maximum Voluntary Contraction

100 surrogates per dataset
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Muscle conduction velocity estimation

Equivalent to time-varying delay estimation

Using HD-sEMG =⇒ Delay estimation across multiple channels

Framework for estimating a delay using all-pass filters

Delay estimate =⇒ Local All-Pass Filters

Multiple channels =⇒ Common Local All-Pass Filters

Estimate a single time-varying delay common across a group of

signals

Demonstration of the CLAP algorithm

Able to automatically estimate the Innervation Zone

Synthetic data =⇒ Robust and accurate

Experimental data =⇒ Biologically plausible CV values & validated

via surrogate testing
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The End

Thank you for listening
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