
A Pruned RNNLM Lattice-Rescoring Algorithm for
Automatic Speech Recognition

Hainan Xu1,2, Tongfei Chen1, Dongji Gao1, Yiming Wang1, Ke Li1, Nagendra Goel3, Yishay Carmiel2, Daniel Povey1, Sanjeev Khudanpur1
1Center for Language and Speech Processing, Johns Hopkins University; 2IntelligentWire, Seattle WA; 3Go-Vivace Inc., USA

Overview
•Usually lattice-rescoring uses n-gram
approximation to limit search space;

•We propose a heuristics that finds more
promising arcs to expand, and use it for
pruning;

•Complexity of the algorithm grows
approximately (empirically) linear with
n-gram order, compared with exponential
growth of the baseline algorithm;

• 4X and 10X faster for 4-gram and 5-gram;
•The heuristics also consistently improves
WER;

•The evaluation is done with TensorFlow
RNNLMs. We open source the integration of
TensorFlow to Kaldi.

Lattice Rescoring

• In speech recognition, decoding is usually done on
a static decoding graph compiled from an n-gram;

•RNNLM rescoring helps further reduce WERs by
(partially) replacing LMs weights on a decoded
lattice;

•A naive implementation to rescore the lattice is
too costly – it runs exponentially w.r.t.
lattice-depth;

•An n-gram approximation algorithm is commonly
used in order to limit the search space.

Contact Information
•Web: http://www.hainanxv.com
•Email: hxu31@jhu.edu

Analysis of Old Algorithm

b

c

d

e

a
1

2

3

5

4

b

c

d

e

a

3

5

4

c

d

e

2

7

9

8

1

6

b

c

d

e

a

3

5

4

c

d

2

7

1

6

(c)(a) (b)

• In 3-gram approximation, states 4 and 8 in (b)
are merged as state 4 in (c);

• state 4 encodes history of either (a, c, d) or (b, c,
d). The choice is arbitrary, and affects the weight
computed for p(e | 4).

Pruned Algorithm

•For each arc to be expanded, we compute a score
reflecting how likely this arc will become part of
the best-path;

•Arcs that are not very promising (out of the
beam) are not expanded;

•Arcs that are more promising get expanded first,
so that output lattice states encode “better”
history.

Heuristic

•The heuristic is computed as
H(c) = α(c) + β(a) + δ(c) (1)

• c: a state in the output lattice;
•a: the corresponding state in the input lattice;

•α(c) is the forward-cost for c in the output lattice
•β(a) is the backward-cost for a in the input lattice
• δ(c) is an “expectation” of β(c)− β(a)

δ(c) =



β(c)− β(a), β(c) < +∞
δ(prev(c)), β(c) = +∞

(2)

prev(c) is the previous state of c on the best path
from start to c.

Lattice-rescoring Speed

Output Lattice Size
(arcs per frame)

Acknowledgements

This work was partially supported by DARPA LORELEI
award number HR0011-15-2-0024, NSF Grant No CRI-
1513128 and IARPA MATERIAL award number FA8650-17-
C-9115 and by IntelligentWire. The authors would also like
to thank the TensorFlow team at Google for their help during
the project.

Word-error-rate

ARPA RNNLM rescoring with n-gram approximation
Corpus Test set baseline 2-gram 3-gram 4-gram

standard pruned standard pruned standard pruned
AMI-IHM dev 24.2 24.5 24.0 23.7 23.4 23.4 23.3

(0.5) eval 25.4 25.8 25.0 24.6 24.4 24.3 24.2
SWBD swbd 8.1 8.6 8.2 7.4 7.2 7.2 7.1
(0.8) eval2000 12.4 12.9 12.3 11.7 11.5 11.5 11.3
WSJ dev93 7.6 7.2 6.9 6.4 6.2 6.4 6.2
(0.8) eval92 5.1 4.6 4.2 4.1 3.9 3.9 3.8

test-clean 6.0 5.5 5.1 4.9 4.8 4.8 4.7
LIB test-other 15.0 14.0 13.2 12.7 12.4 12.4 12.3
(0.5) dev-clean 5.7 5.0 4.8 4.4 4.3 4.3 4.3

dev-other 14.5 13.7 12.9 12.3 12.0 11.9 11.7
Table 1: WER of Lattice-rescoring of Different RNNLMs

http://www.hainanxv.com/
http://www.hainanxv.com
mailto:hxu31@jhu.edu

