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ABSTRACT

Precise estimation of synchronization parameters is essential for re-
liable data detection in digital communications and phase errors can
result in significant performance degradation. The literature on es-
timation of synchronization parameters, including the carrier fre-
quency offset, are based on approximations or heuristics because
the optimal estimation problem is analytically intractable for most
cases of interest. We develop an online Bayesian inference proce-
dure for blind estimation of the frequency offset, for arbitrary signal
constellations. Our unified approach is built on a sequential infer-
ence procedure that leverages a novel result on conjugacy of the von
Mises and Gaussian distributions. This conjugacy allows for an eas-
ily computable, closed form parametric expression for the posterior
distribution of the parameters given the streaming data, in which hy-
perparameters are recursively updated, making the optimal sequen-
tial estimation problem mathematically tractable. Our algorithm is
computationally efficient and can be implemented in real-time with
very low memory requirements. Numerical experiments are also
provided and show that our methods outperform approximate se-
quential maximum-likelihood carrier frequency offset estimators.

Index Terms— Sequential Estimation, Blind Synchronization,
Frequency Offset Estimation, Bayesian Inference, Phase tracking.

1. INTRODUCTION

Synchronization plays a critical role in attaining reliable digital
transmission through wireless channels. Timing and frequency off-
sets need to be estimated well in order to align the received signal
appropriately at the receiver before data detection. Optimal estima-
tors for synchronization parameters do not exist and as a result, most
of the existing literature uses approximate maximum-likelihood
techniques and heuristics [1, 2]. Even in the simpler setting, where
the amplitude is known and constant, optimal estimation of the
frequency offset is not known in closed-form and only approxi-
mate maximum-likelihood (ML) and maximum a posterior (MAP)
approaches are tractable [3].

In digital communications, there is often a mismatch between
the local oscillator of the transmitter and the receiver. This translates
to a carrier frequency error when downconverting at the receiver,
which effectively rotates the signal constellation from sample-to-
sample. For small carrier frequency errors, ∆f , the constellation
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rotates slowly and tracking its rotation rate is required for successful
data detection. Popular methods for carrier synchronization include
the use of a phase-lock loop (PLL), which often requires hardware
implementation or waveform-level block-based processing in soft-
ware, both of which can be expensive. Furthermore, the PLL ap-
proach often requires pilot data for higher order modulations. A
synchronization approach based on model-based sequential Monte
Carlo (SMC) techniques was proposed in [4] to estimate the timing
offset and the data, but is heavily dependent on known state-space
dynamic models governing the evolution of the parameters, several
approximations are made to make the SMC algorithm tractable, and
is computationally expensive as the complexity of the SMC grows
exponentially fast [4].

Phase synchronization often relies on known features of the sig-
nal. This may involve training data [5], modulation [6], or higher-
order moments [7]. In contrast, our approach only assumes baud
synchronization, is not data-aided (i.e., blind), works for arbitrary
signal modulations, operates at the sample-level, is simple to imple-
ment, and has very low latency and storage requirement as it pro-
ceeds on-the-fly in an online fashion. In this paper, we propose a
novel sequential Bayesian inference framework to estimate the un-
known carrier frequency offset and the parameters of the signal mod-
ulation.

We leverage ideas from the sequential inference approach of [8]
to derive a sequential Bayesian algorithm to estimate the frequency
offset and the constellation parameters given streaming non-i.i.d. re-
ceived samples. This is a challenging machine learning problem
primarily because of the temporal dynamics of the data generation
process. Our method exploits the temporal relation from sample-
to-sample and uses the online clustering and parameter estimation
framework developed in [8]. Solid empirical performance is ob-
served for slow enough rotation rates in our experiments.

2. SEQUENTIAL BAYESIAN INFERENCE FRAMEWORK

Here, we review the sequential Bayesian inference framework of [8]
for online clustering and parameter estimation. Define the unknown
parameters θ = (µ1, . . . ,µK , δ), where δ ∈ [0, 2π) is the unknown
rotation offset and µh is the mean of each class (i.e., cluster cen-
ter). Let the observations be given by yi ∈ Rd, and γi to denote
the class label of the ith observation (a latent variable). We de-
fine the available information at time i as y(i) = {y1, . . . ,yi} and
γ(i−1) = {γ1, . . . , γi−1}. The algorithm proceeds as follows. For
i = 1, 2, . . . ,



1. Choose best class label for yi:

γi ∼ {q(i)
h } =

{
Li,h(yi)πi,h∑
h′ Li,h′(yi)πi,h′

}
. (1)

2. Update the posterior distribution using yi, γi:

π(θγi |y
(i), γ(i)) ∝ f(yi|θγi)π(θγi |y

(i−1), γ(i−1)). (2)

where θh are the parameters of class h, f(yi|θh) is the observa-
tion density conditioned on class h. The conditional likelihood
P (yi|γi = h,y(i−1), γ(i−1)) is denoted by Li,h(yi) and πi,h de-
notes the class priors. The algorithm sequentially allocates observa-
tions yi to classes by sampling the conditional posterior probability
distribution {q(i)

h }.

3. PROBLEM FORMULATION AND PROBABILISTIC
MODEL

Consider a digital communication system where symbols from a dis-
crete unknown alphabet, xm ∈ A ⊂ C are transmitted through a
channel. The received signal at the front-end of the receiver consist-
ing of a matched filter can be modeled as:

y(t) = ej2π∆ft
∑
m

xmg(t−mT ) + w(t)

where T is the symbol period, g(·) is the raised-cosine pulse wave-
form, and w(t) is additive white Gaussian noise (AWGN) with
power spectral density N0/2. Here, ∆f is the carrier frequency
error. Sampling the output of the matched filter at a rate 1/T , we
obtain the discrete-time signal:

yk = ej2π∆fkTxk + wk (3)

where yk = y(kT ), wk = w(kT ), and k = 0, 1, . . . is the discrete-
time index. Note the phase rotation offset δ = 2π∆fT is propor-
tional to the carrier frequency error ∆f .

We consider a Bayesian framework for estimating the unknown
mean for each class and unknown phase rotation offset δ. This
framework can be extended to include unknown covariances as well
(corresponding to unknown SNR), but is not considered here for sim-
plicity (see [8]).

The observation model (3) in vector form is given by:

yi = R(θi)xi + wi

θi+1 = θi + δ

where yi
def
= [Re(yi), Im(yi)]

T , xi
def
= [Re(xi), Im(xi)]

T are sym-
bols from a constellation, wi is additive Gaussian noise with covari-
ance σ2I2. 1 Here, R(θ) is the rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
Without loss of generality, we assume θ1 = 0. The unknown pa-
rameters in the model are the constellation symbols x, and the phase
offset δ. Let K = |A| denote the size of the symbol alphabet.

The probabilistic model for the unknown parameters is given as:

y|µ, δ ∼ N (·|R(δ)µ, σ2I)

µ ∼ N (·|µ0, σ
2
0I)

δ ∼ V(·|δ0, κ0) (4)

1The data dimensions is d = 2.

where N (·|µ,Σ) denote the multivariate normal distribution with
mean µ and covariance matrix Σ, and V(·|δ0, κ0) denotes the von
Mises distribution with direction parameter δ0 and concentration pa-
rameter κ0. The parameters θ = (µ, δ) ∈ Rd × [−π, π) follow
a normal-von Mises joint distribution. The corresponding graphical
model is shown in Fig. 1.
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Fig. 1. Graphical model for simultaneous phase tracking and param-
eter estimation problem.

For concreteness, let us write the distribution in (4):

f(yi|θ) = p(yi|µ, δ) =
1

(2πσ2)d/2
e
− 1

2σ2
‖yi−R(δ)µ‖22

p(µ) =
1

(2πσ2
0)d/2

e
− 1

2σ20

‖µ−µ0‖
2
2

p(δ) =
1

2πI0(κ0)
eκ0 cos(δ−δ0)

where I0(·) is the modified Bessel function of order 0.
Due to the conjugacy of the distributions, the posterior distribu-

tion π(θh|y(i−1), γ(i−1)) always has the form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ
(i−1)
h , (σ

(i−1)
h )2I)

× V(δ|δ(i−1), κ(i−1)) (5)

where µ
(i−1)
h , σ

(i−1)
h , δ(i−1), κ(i−1) are hyperparameters that can

be recursively computed as new samples come in. This factorization
is proven analytically in Section 4.

We will show in Section 4 that the model (4) leads to closed-
form expressions for hyperparameter updates due to conjugacy.

4. CONJUGACY AND HYPERPARAMETER UPDATES

In this section, we derive the hyperparameter updates. For simplicity,
let y be a generic observation of the form:

y = R(δ)x + w (6)

The conditional distribution p(µ|δ,y) ∝ p(y|µ, δ)p(µ) is mul-
tivariate normal with mean and covariance given by:

E[µ|δ,y] =
σ2

0

σ2 + σ2
0

R(δ)Ty +
σ2

σ2 + σ2
0

µ0

Cov(µ|δ,y) =
σ2σ2

0

σ2 + σ2
0

I

Recall the von Mises prior distribution on δ, i.e., p(δ) ∝
eκ0 cos(δ−δ0). The posterior is given by

p(δ|y) ∝ p(y|δ)p(δ)

∝ exp

(
−‖y −R(δ)µ0‖

2
2

2(σ2 + σ2
0)

+ κ0 cos(δ − δ0)

)

∝ exp

(
yTR(δ)µ0

σ2 + σ2
0

+ κ0 cos(δ − δ0)

)
(7)



We will show that the posterior is also a von Mises distribution, i.e.,
p(δ|y) ∝ exp(κnew cos(δ−δnew)). Let µ0 = [µ0,R, µ0,I ]

T . Then,
direct calculations yield:

yTR(δ)µ0 = (yTµ0) cos δ + (yT µ̃0) sin δ (8)

where µ̃0
def
= [−µ0,I , µ0,R]T . Furthermore, from a trigonometric

identity, we obtain:

κ0 cos(δ − δ0) = κ0 cos(δ0) cos δ + κ0 sin(δ0) sin δ (9)

Using (8) and (9) into (7), we obtain:

p(δ|y) ∝ exp

((
κ0 cos(δ0) +

yTµ0

σ2 + σ2
0

)
cos δ

+

(
κ0 sin(δ0) +

yT µ̃0

σ2 + σ2
0

)
sin δ

)

This equals exp(κnew cos(δ − δnew)) for all δ ∈ [−π, π) iff:

κ0 cos(δ0) +
yTµ0

σ2 + σ2
0

= κnew cos(δnew)

κ0 sin(δ0) +
yT µ̃0

σ2 + σ2
0

= κnew sin(δnew)

Solving for κnew and δnew, we obtain:

κ2
new =

(
κ0 cos(δ0) +

yTµ0

σ2 + σ2
0

)2

+

(
κ0 sin(δ0) +

yT µ̃0

σ2 + σ2
0

)2

δnew = tan−1

 κ0 sin(δ0) + yT µ̃0

σ2+σ2
0

κ0 cos(δ0) + yTµ0

σ2+σ2
0


Returning to the model at the ith time instant, pre-multiplying

with the rotation matrix R(θi−1)T :

R(θi−1)Tyi = R(θi−1)TR(θi)xi + R(θi−1)Twi

= R(θi−1)−1R(θi−1)R(δ)xi + R(θi−1)Twi

= R(δ)xi + R(θi−1)Twi

where R(θi−1)Twi is Gaussian noise with zero mean and covari-
ance σ2I, due to rotation invariance. Thus, the model (6) becomes
applicable when applied to R(θi−1)Tyi. This essentially amounts
to rotating the vector yi by an angle θi−1. A graphical illustration
of this rotation is shown in Fig. 2.

𝜇𝜇 
𝑦𝑦𝑖𝑖  

Re 

𝑅𝑅 𝜃𝜃𝑖𝑖−1 𝑇𝑇𝑦𝑦𝑖𝑖  
Im 

𝜙𝜙 

𝜙𝜙 + 𝜃𝜃𝑖𝑖  

𝜙𝜙 + (𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖−1) 
𝛿𝛿 

Fig. 2. Illustration of pre-rotation of observation yi to reduce to
model (6).

To summarize, once the γith component is chosen, the parame-
ter updates for the γith class become:

δ(i) = tan−1

 κ(i−1) sin δ(i−1) +

〈
R(θ(i−1))T yi,µ̃

(i−1)
γi

〉
σ2+(σ

(i−1)
γi

)2

κ(i−1) cos δ(i−1) +

〈
R(θ(i−1))T yi,µ

(i−1)
γi

〉
σ2+(σ

(i−1)
γi

)2


(10)

(κ(i))2 =

κ(i−1) sin δ(i−1) +

〈
R(θ(i−1))Tyi, µ̃

(i−1)
γi

〉
σ2 + (σ

(i−1)
γi )2

2

+

κ(i−1) cos δ(i−1) +

〈
R(θ(i−1))Tyi,µ

(i−1)
γi

〉
σ2 + (σ

(i−1)
γi )2

2

(11)

θ(i) = θ(i−1) + δ(i) (12)

γ(i) ∼ q(i)
h =

Li,h(R(θ(i))Tyi)πi,h∑
h Li,h(R(θ(i))Tyi)πi,h

µ(i)
γi

=
(σ

(i−1)
γi )2

σ2 + (σ
(i−1)
γi )2

R(θ(i))Tyi +
σ2

σ2 + (σ
(i−1)
γi )2

µ(i−1)
γi

(13)

(σ(i)
γi )2 = (σ(i−1)

γi )2

(
σ2

σ2 + (σ
(i−1)
γi )2

)
(14)

For exactly known means (i.e., constellation parameters), one can
set σ(i)

h = 0 and µ
(i)
h = µh for all h, i. In this case, the updates

(13)-(14) become superfluous. In practice, an early-late gate timing
recovery method [9] can be coupled into the parameter updates (10)-
(14) to track timing. Since early-late gate methods are based on
magnitude only, they are not affected by the phase offset estimation.

5. CALCULATION OF CONDITIONAL LIKELIHOOD

To calculate the class posteriors {q(i)
h }, the conditional likelihoods

of yi given assignment to class h and the previous class assignments
need to be calculated first. The conditional likelihood of yi given
assignment to class h and the history (y(i−1), γ(i−1)) is given by:

Li,h(yi) =

∫
f(yi|θh)π(θh|y(i−1), γ(i−1))dθh (15)

We recall from (5) that the posterior distribution has the product
form:

π(θh|y(i−1), γ(i−1)) = N (µh|µ
(i−1)
h , (σ

(i−1)
h )2I)V(δ|δ(i−1), κ(i−1))

5.1. Exact Calculation

Using (5) into (15), we obtain:

Li,h(yi) =

∫ π

−π
f

(i−1)
h (δ; yi)V(δ|δ(i−1), κ(i−1))dδ (16)



where

f
(i−1)
h (δ; yi)

def
=

∫
Rd
N (yi|R(θ(i−1) + δ)µ, σ2I)

×N (µ|µ(i−1)
h , (σ

(i−1)
h )2I)dµ

=
1

(2πσ2)d/2
1

(2π(σ
(i−1)
h )2)d/2

×
∫
e
− 1

2

(
‖µ−µ

(i−1)
h

‖22
(σ

(i−1)
h

)2
+
‖µ−R(θ(i−1)+δ)T yi‖

2
2

σ2

)
dµ

After completing the square, using the Gaussian normalization and
simplifying, we obtain:

f
(i−1)
h (δ; yi) =

exp

(
− ‖R(θ(i−1)+δ)T yi−µ

(i−1)
h

‖22
2(σ2+(σ

(i−1)
h

)2)

)
(2π(σ2 + (σ

(i−1)
h )2))d/2

Define ỹi = R(θ(i−1))Tyi. Plugging this expression into (16), we
obtain after some algebra:

Li,h(yi) =
1

2πI0(κ(i−1))

exp

(
− ‖yi‖

2
2+‖µ(i−1)

h
‖22

2(σ2+(σ
(i−1)
h

)2)

)
(2π(σ2 + (σ

(i−1)
h )2))d/2

×
∫ π

−π
exp

(
κ(i−1) cos(δ − δ(i−1))

+
1

σ2 + (σ
(i−1)
h )2

ỹTi R(δ)µ
(i−1)
h

)
dδ

=
1

2πI0(κ(i−1))

exp

(
− ‖yi‖

2
2+‖µ(i−1)

h
‖22

2(σ2+(σ
(i−1)
h

)2)

)
(2π(σ2 + (σ

(i−1)
h )2))d/2

×
∫ π

−π
exp (κh,i−1 cos(δ − δh,i−1)) dδ

=
I0(κh,i−1)

I0(κ(i−1))

exp

(
− ‖yi‖

2
2+‖µ(i−1)

h
‖22

2(σ2+(σ
(i−1)
h

)2)

)
(2π(σ2 + (σ

(i−1)
h )2))d/2

(17)

where the parameters δh,i−1, κh,i−1 are given by:

δh,i−1 = tan−1

 κ(i−1) sin δ(i−1) +

〈
ỹi,µ̃

(i−1)
h

〉
σ2+(σ

(i−1)
h

)2

κ(i−1) cos δ(i−1) +

〈
ỹi,µ

(i−1)
h

〉
σ2+(σ

(i−1)
h

)2



(κh,i−1)2 =

κ(i−1) sin δ(i−1) +

〈
ỹi, µ̃

(i−1)
h

〉
σ2 + (σ

(i−1)
h )2

2

+

κ(i−1) cos δ(i−1) +

〈
ỹi,µ

(i−1)
h

〉
σ2 + (σ

(i−1)
h )2

2

(18)

This computation becomes difficult to compute numerically due to
the ratio of Bessel functions, for large κ(i−1).

5.2. Asymptotic Approximation

As the number of iterations grow, the hyperparameter κ(i−1) gets
large, corresponding to high precision during learning. Expanding

the expression in (18), we obtain:

(κh,i−1)2 = (κ(i−1))2 +
(
〈
ỹi, µ̃

(i−1)
h

〉
)2 + (

〈
ỹi,µ

(i−1)
h

〉
)2

(σ2 + (σ
(i−1)
h )2)2

+
2κ(i−1)

σ2 + (σ
(i−1)
h )2

(〈
ỹi, µ̃

(i−1)
h

〉
sin δ(i−1) +

〈
ỹi,µ

(i−1)
h

〉
cos δ(i−1)

)
= (κ(i−1))2 +

‖ỹi‖22‖µ
(i−1)
h ‖22

(σ2 + (σ
(i−1)
h )2)2

+
2κ(i−1)ỹTi R(δ(i−1))µ

(i−1)
h

σ2 + (σ
(i−1)
h )2

where, in the last step, we used the fact that
{

µ̃
(i−1)
h

‖µ(i−1)
h

‖2
,

µ
(i−1)
h

‖µ(i−1)
h

‖2

}
is an orthonormal basis. We next argue that the norm of the random
vector ỹi cannot be too large with high probability. The Gaussian
random vector ỹi can be written as ỹi = R(θ(i−1))TR(θi)xi + ei,
where ei ∼ N (0, σ2I) and xi is the ith symbol. Since ‖ei‖22 =∑2
j=1([ei]j)

2 is a sum of independent chi-squared random vari-
ables, it follows that ‖ei‖22 is chi-squared distributed with 2 degrees
of freedom, and as a result:

P(‖ei‖22 > t) =

∫ ∞
t

e−u/(2σ
2)

2
du = e

− t
2σ2

which implies that ‖ei‖22 ≤ 2σ2 ln(1/δ) with probability at least
1− δ. Factoring out (κ(i−1)2:

(κh,i−1)2 = (κ(i−1)2

1 +
2ỹTi R(δ(i−1))µ

(i−1)
h

κ(i−1)
(
σ2 + (σ

(i−1)
h )2

) +O

(
1

κ(i−1)

)2
 .

Thus, after taking square roots and using the Taylor approximation√
1 + x ≈ 1 + x

2
for small x, we obtain

κh,i−1 = κ(i−1) +
ỹTi R(δ(i−1))µ

(i−1)
h

σ2 + (σ
(i−1)
h )2

+O

(
1

κ(i−1)

)
. (19)

Recall the large-z approximation of the first-kind zero-order Bessel
function I0(z) [10]:

I0(z) ≈ ez√
2πz

For large κ(i−1), in virtue of (19), the ratio of Bessel functions in
(17) can be approximated as:

I0(κh,i−1)

I0(κ(i−1))
≈

√
κ(i−1)

κh,i−1
eκh,i−1−κ(i−1)

=

exp

(
ỹTi R(δ(i−1))µ

(i−1)
h

σ2+(σ
(i−1)
h

)2
+O

(
1

κ(i−1)

))
√

1 + 1

κ(i−1)

ỹTi R(δ(i−1))µ
(i−1)
h

σ2+(σ
(i−1)
h

)2
+O

(
1

(κ(i−1))2

)
−→ exp

(
ỹTi R(δ(i−1))µ

(i−1)
h

σ2 + (σ
(i−1)
h )2

)

as κ(i−1) → ∞. Using this approximation in (17), we obtain after
some algebra:

Li,h(yi) ≈
exp

(
− ‖R(θ(i−1)+δ(i−1))T yi−µ

(i−1)
h

‖22
2(σ2+(σ

(i−1)
h

)2)

)
(2π(σ2 + (σ

(i−1)
h )2))d/2

(20)



Thus, the large-sample approximation to the conditional likelihood
is a normal distribution, i.e., yi ∼ N (·|R(θ(i−1)+δ(i−1))µ

(i−1)
h , (σ2+

(σ
(i−1)
h )2)I). We remark that a similar asymptotic normality result

was proven in [8] for the conditional likelihood under the Gaussian-
Wishart conjugate model. In the simulations, we use the logarithm
of (20) for numerical stability to implement the selection step (1).

6. SIMULATIONS

In this section, we perform a simulation experiment on detecting
and estimating the constellation parameters of a 16-QAM modula-
tion. The phase rotation angle per-symbol is δ = 3◦. The correct
number of classes for this data set is 16, each one corresponding to
4 information bits.

Data symbols {xi} are randomly (uniformly) chosen from the
16-QAM constellation and corrupted with additive noise at SNR of
15dB. The data is plotted in Fig. 3, along with the original signaling
locations arranged in a rectangular grid.
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Fig. 3. Noisy constellation data from 16-QAM constellation with
phase rotation rate of δ = 3◦ at 30dB (left) and 15dB (right).

For comparison, we consider the approximate sequential maximum-
likelihood (ML) phase estimator (see Appendix A for derivation):

θ(i) = ∠

{
yi

PA(e−jθ(i−1)yi)

}
(21)

where yi = yRi + jyIi , PA(z)
def
= arg minµ∈A ‖z − µ‖22 is the

minimum norm projection on the constellation A. Fig. 4 shows the
clustering performance of this approximate ML method for 30dB
and 15dB SNR. For low SNR, the clusters have a high circular spread
and are not appropriately estimated. As shown in Fig. 4, the phase
offset δ is not learned as the number of samples grow; although the
mean is around 3◦, the variance is quite high (SNR-dependent) and
is not decaying as a function of iteration.

To alleviate this problem and improve the estimation perfor-
mance at low SNR, we use the online Bayesian estimation algorithm
developed to estimate the frequency offset. Fig. 5 shows the clus-
tering performance and the estimation performance of the Bayesian
algorithm. In our simulations, we implemented the parameter up-
dates (10)-(12), and set µ(i)

h = µh, σ
(i)
h = 0 for all h, i because

no uncertainty in the constellation parameters was assumed. The al-
gorithm was initialized with δ(1) = 0. With the Bayesian learning
algorithm based on the von Mises prior, asymptotic learning occurs
for the phase offset δ as more samples are processed. This leads to
a significantly more stable performance when compared to the ap-
proximate ML phase estimator (see Fig. 4). Fig. 5 implies that the
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Fig. 4. Resulting compensated constellation (top), frequency off-
set estimate (middle) and phase estimate (bottom), for approximate
sequential ML phase estimator (21) for 30dB (left) and 15dB SNR
(right), respectively.

rate of learning is SNR-dependent; the higher the SNR, the faster the
frequency offset parameter is learned.

7. CONCLUSION

We have proposed an online Bayesian framework for blind esti-
mation of the frequency offset and the parameters of an arbitrary
signal constellation. Our approach leveraged novel conjugate prior
distribution theory for the von Mises and Gaussian distribution,
which allowed us to derive closed-form updates of the hyperparam-
eters of the posterior distribution of the unknown parameters given
streaming data. Asymptotic normality of the conditional likelihood
was proven, and led to numerically stable algorithms. Simulations
showed that our estimation algorithm results in fast convergence
and learning of the frequency offset, and significantly outperformed
the approximate sequential maximum-likelihood frequency offset
estimators.
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Fig. 5. Resulting compensated constellation (top), frequency off-
set estimate (middle) and phase estimate (bottom), for sequential
Bayesian estimator (10)-(14) for 30dB (left) and 15dB SNR (right),
respectively.

Appendix A: Derivation of approximate
sequential ML phase estimator
In this appendix, we derive the approximate sequential ML phase
estimator. The ML estimator for θ maximizes the likelihood:

p(yk|θ) =
1

(πσ2)d
exp

(
−|yk − xke

jθk |2

σ2

)

=
exp

(
− |yk|

2+|xk|2
σ2

)
(πσ2)d

exp

(
2|xk||yk|
σ2

cos(∠{yk} − (∠{xk}+ θk))

)
Taking the logarithm of p(yk|θ), the necessary condition for the ML
estimator becomes:

∂ log p(yk|θ)
∂θ

=
2|xk||yk|
σ2

sin(∠{yk} − (∠{xk}+ θk)) = 0

For high SNR, the phase error ek = ∠{yk} − (∠{xk} + θk) is
expected to be small. Using the small-angle approximation sin(x) ≈
x, the optimality condition becomes ∠{yk} − (∠{xk} + θk) ≈ 0,

which leads to the approximate ML phase estimator:

θ
(ML)
k = ∠

{
yk
xk

}
(22)

In practice, xk is unknown so (22) cannot be implemented directly.
Let θ(k−1) denote the phase estimator corresponding to the previous
sample. For small phase rotation δ, the symbol xk can be approxi-
mated as:

PA(e−jθ
(k−1)

yk) = PA(e−jθ
(k−1)

(xke
jθk + wk))

≈ PA(xke
j(θk−θ(k−1))) (high SNR)

≈ PA(xke
jδ) (θ(k−1) ≈ θk−1)

≈ xk (δ ≈ 0)

Thus, substituting PA(e−jθ
(k−1)

yk) into the denominator of the an-
gle argument in (22), we arrive at (21).
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