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ABSTRACT

Electroencephalogram (EEG) is a gold standard in epilepsy
diagnosis and has been widely studied for epilepsy-related
signal classification, such as seizure detection or focus lo-
calization. In the past few years, discrete wavelet transform
(DWT) has been widely used to analyze epileptic EEG. How-
ever, one practical question unanswered is the optimal levels
of wavelet decomposition. Deeper DWT can yield a more de-
tailed depiction of signals but it requires substantially more
computational time. In this paper, we study this problem, us-
ing the most difficult epileptic EEG classification task, focus
localization, as an example. The results show that decomposi-
tion level effects the localization accuracy more significantly
than mother wavelets. For all wavelets, decomposition be-
yond level 7 improves accuracy limitedly and even decreases
accuracy. We further study what are the most effective bands
and features for focus localization. An interpretation of our
results is that focal and non-focal epileptic EEGs differ the
most at high frequencies of EEG rhythms. The best accu-
racy of epileptic focus localization achieved in this research
is 83.07% using sym6 from levels 1 to 7.

Index Terms— EEG, epileptic focus localization, DWT

1. INTRODUCTION

Affecting approximately 60 million people worldwide, epilepsy
is the second most common neurological disorder. Epilepsy
is characterized by recurring seizures caused by abnormal
discharges in the brain [1]. Directly recording the neuroelec-
tric activities, electroencephalogram (EEG) is a gold standard
in epilepsy diagnosis. Diagnostic tasks for epilepsy, such
as seizure detection [2, 3], spike detection [4, 5] and focus
localization [6, 7], usually require long-term EEG recording
up to a few days. Therefore, many computer-aided solutions
have been developed to assist neurologists. Combining signal
processing and machine learning, most of those approaches
model the problem as classification of signals, such as epilep-
tic vs. healthy for epilepsy diagnosis [8, 9], ictal (on seizure)
vs. interictal for seizure onset detection [10, 11], etc. The
most difficult type of classification is seizure focus localiza-

tion [5] where the source (anatomical or in terms of EEG
channels) of seizure activities need to be identified [12].

Applying Discrete Wavelet Transform (DWT) on epilepsy-
related EEG signal classification is gaining ground in recently
years. The main advantage of DWT is that the resolution of
time and frequency in DWT can be adapted to the frequency
content of the examined patterns, thus leading to an optimal
time-frequency resolution in all frequency ranges [12, 13].
This makes DWT specially suitable for the analysis of non-
stationary signals such as EEG [5, 14].

However, among all applications of DWT in epileptic
EEG research, one question still unclear is how many levels
of decomposition are sufficient. More levels of decompo-
sition provide a more detailed depiction to the signals, but
increase the computational cost, sometimes exponentially
(e.g., RBF kernel SVM [15]).

This paper aims at finding the trade-off between decom-
position level and EEG signal classification accuracy. For
space sake, we pick seizure focus localization, the most diffi-
cult epileptic EEG classification problem [5], as an example
to study. The machine learning approach to seizure focus lo-
calization is to classify focal and non-focal EEGs recorded
simultaneously from multiple channels [6, 7]. Another rea-
son we pick focus localization is because DWT has delivered
promising results on other epileptic EEG classification prob-
lems [10, 16] and therefore may be useful to apply to focus
localization.

Seven families of 54 total mother wavelets are used in this
research. For each mother wavelet, we decompose the signal
to the maximum allowed levels, i.e., full-level decomposition.
Not only do we study the relationship between decomposition
level and accuracy, we also perform feature selection [3] and
wavelet band selection. Choosing suitable features that can
best represent the characteristics of the EEG signals is impor-
tant for EEG classification [10]. Features used in this research
are those well-known in wavelet-based EEG signal classifica-
tion [13,17]. Our results show that given deep enough decom-
position, all mother wavelets deliver similar results. Further-
more, consistently across all mother wavelets, decomposition
beyond certain level provides little accuracy improvement and
even sometimes decreases performance instead. Our explana-
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tion to the results is that focal and non-focal EEG differs the
most at high frequencies of EEG rhythms. The best accuracy
of 83.07% is achieved by RBF-kernel SVM [18] when using
sym6 as mother wavelets and its features from levels 1-7.

2. PROBLEM FORMULATION AND DATASET

We formulate the problem of epileptic focus localization as
classifying focal and non-focal EEG channels from multi-
channel EEG recordings. “Focal EEG channels” are defined
as channels that first show ictal EEG signal changes as vi-
sually judged by neurologists. All other channels are “non-
focal.” We call EEG recordings from focal and non-focal
channels as focal and non-focal EEG signals, respectively.
Therefore, epileptic focus localization can be further trans-
formed into a signal classification problem: classifying fo-
cal and non-focal EEG signals from simultaneously-recorded
multi-channel EEG signals.

In this research, we use the dataset from Department of
Neurology, University of Bern, Barcelona, Spain [19] to de-
velop and test our classifier. To our best knowledge, this is
the only open dataset that provides clear annotation on fo-
cal and non-focal signals during ictal periods. The dataset
contains intracranial EEG (iEEG) signals of five patients who
had long-standing pharmacoresistant temporal lobe epilepsy
(TLE) and were candidates for epilepsy surgery. For each
subject in this dataset, focal and non-focal EEG channels were
determined by at least two neurologists who are also board-
certified electroencephalographers. The iEEG signals were
sampled at 512Hz and digitally band-pass filtered between 0.5
and 150Hz using a 4th-order Butterworth filter. For each sub-
ject, 750 focal and 750 non-focal EEG segments are included,
resulting in 7,500 total segments. Each segment lasts 20 sec-
onds. More details about the dataset can be found in [19].

3. METHOD

3.1. Discrete Wavelet Transform

Here we briefly go over concepts of discrete wavelet trans-
form. A wavelet is a quickly vanishing oscillating func-
tion localized both in frequency and in time. In continuous
wavelet analysis, the signal is decomposed into scaled and
translated versions (ψa,b(t)) of a single function ψ(t) called
mother wavelet:

ψa,b(t) =
1√
|a|
ψ(
t− b
a

) (1)

where a and b are the scale and translation parameters, re-
spectively, with a, b ∈ R and a 6= 0. The discrete wavelet
transform (DWT) [20] is obtained by discretizing the param-
eters a and b. In its most common form, the DWT employs a
dyadic sampling with parameters a and b based on powers of
two: a = 2j and b = k2j , with j, k ∈ Z. By substituting in
Eq. 1, we obtain the dyadic wavelets:

ψj,k(t) = 2−j/2ψ(2−jt− k) (2)

The DWT can be written as

dj,k(t) =

∫ +∞

−∞
s(t)2−j/2ψ∗(2−jt− k) dt = 〈s(t), ψj,k(t)〉 (3)

where dj,k are known as wavelet (or detail) coefficients at
level j and location k [21].

3.2. Wavelet Families

In this paper, we test 7 most commonly used wavelet families’
performance on epileptic focus localization using EEG sig-
nal [5, 14]. The 7 wavelet families are: Coiflets, Daubechies,
DMeyer, Haar, ReverserBior and Symlets [5]. They include
54 family members (mother wavelets) in total as shown in
Table 1.

3.3. Decomposition bands

In this research, each wavelet will be tested through full-level
decomposition. The maximum level L of decomposition is
jointly determined by the signal and the mother wavelet to
satisfy the condition:

L < log2
N

F − 1
+ 1

where N is the signal size and F is the filter size [22]. Each
trial in the Bern-Barcelona dataset has 10240 samples and
hence each wavelet has a maximum decomposition level as
shown in Table 1.
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Fig. 1. An example of 8-level decomposition and correspond-
ing frequency bands

More levels of decomposition can provide more details for
signals. Fig. 1 illustrates the frequency bands covered by each
level of decomposition, given the frequency range from 0.5Hz
to 150Hz. As to be discussed in Section 3.4, wavelet coeffi-
cients at each band can be used to construct feature vectors for



Table 1. Wavelet members, maximum decomposition level, best accuracy and best level of decomposition

Wavelet Max
level

Best
(Accuracy / Level) Wavelet Max

level
Best

(Accuracy / Level) Wavelet Max
level

Best
(Accuracy / Level)

bior1.1 13 80.45% / 9 coif4 8 81.01% / 7 rbio2.8 9 81.43% / 9
bior1.3 11 80.57% / 7 coif5 8 81.21% / 7 rbio3.1 11 81.33% / 6
bior1.5 10 80.72% / 7 db1 13 80.45% / 9 rbio3.3 10 81.11% / 7
bior2.2 11 81.05% / 8 db2 11 81.26% / 7 rbio3.5 9 81.16% / 7
bior2.4 10 81.18% / 9 db3 11 81.17% / 8 rbio3.7 9 80.97% / 9
bior2.6 9 81.32% / 8 db4 10 80.92% / 7 rbio3.9 9 81.29% / 7
bior2.8 9 81.41% / 8 db5 10 80.86% / 7 rbio4.4 10 81.49% / 7
bior3.1 11 80.33% / 7 db6 9 81.13% / 7 rbio5.5 9 81.28% / 9
bior3.3 10 80.77% / 7 db7 9 81.24% / 9 rbio6.8 9 81.67% / 9
bior3.5 9 80.57% / 7 db8 9 81.08% / 7 sym2 11 81.27% / 7
bior3.7 9 80.98% / 8 db9 9 81.12% / 7 sym3 11 81.17% / 8
bior3.9 9 81.08% / 8 db10 9 80.78% / 9 sym4 10 81.51% / 7
bior4.4 10 81.44% / 10 rbio1.1 13 80.45% / 9 sym5 10 81.47% / 10
bior5.5 9 81.66% / 7 rbio1.3 11 80.92% / 7 sym6 9 81.59% / 7
bior6.8 9 81.37% / 7 rbio1.5 10 81.41% / 7 sym7 9 81.00% / 7
coif1 11 80.93% / 7 rbio2.2 11 80.97% / 7 sym8 9 81.44% / 7
coif2 9 81.45% / 8 rbio2.4 10 81.41% / 7 dmey 6 79.67% / 5
coif3 9 81.65% / 7 rbio2.6 9 81.40% / 7 haar 13 80.45% / 9

the EEG signal [12]. Therefore, deeper decomposition means
more frequency bands and thus longer feature vectors. An op-
timal level of decomposition should provide a good balance
between computation complexity and accuracy.

3.4. Classification

Wavelet decomposition results in a sequence of coefficients
for each band. Because of their high dimensionality, features
are often extracted from them to be used by classifiers [5, 9].
The commonly used features for wavelet coefficients in each
band include: the maximum coefficient (denoted as Max),
the minimum coefficient (denoted as Min), the mean of co-
efficients, the standard deviation (denoted as STD) of coef-
ficients, the skewness of coefficients, the kurtosis of coeffi-
cients, the squared sum of all coefficients (Energy), the nor-
malized standard deviation STD

Max−Min and the normalized en-
ergy. The normalized energy is the ratio between energy and
the size of the band. Features from all bands form the final
feature vector.

The Bern-Barcelona iEEG dataset [19] provides two kinds
of EEGs: focal or non-focal. As mentioned earlier in Sec-
tion 2, the problem of seizure focus localization can be formu-
lated into a binary classification problem on those two kinds
of EEGs. We use SVM with RBF kernel as the classifier
here. Grid search on SVM parameters is performed on values
10−4, 10−3, . . . , 103, 104 for both C and γ. The best C and
γ of each wavelet family and corresponding wavelet member
will be used later in band selection and feature selection.

In order to study the performance of classifiers, especially
its ability to overcome individual differences, we use leave-
one-subject-out cross validation (CV). In each time, only one

subject’s data is used as test set while all others’ data as train-
ing set. If we mix the same subject’s data in both training and
test sets, the classifier can learn prior knowledge about this
subject’s EEG. Hence, leave-one-subject-out CV can truly re-
veal the robustness of the classifier on overcoming individual
difference.

3.5. Band Selection & Feature Selection

In this paper, not only do we want to know the optimal depth
of wavelet transformation, but also what bands and features
are most discriminative in classifying focal and non-focal
EEGs. Hence, we performed band selection and feature
selection on features extracted from all bands.

Band selection and feature selection are done as follows.
Given a mother wavelet, the maximum decomposition level of
a single trial EEG is j, DWT will give j+1 frequency bands (j
details and 1 approximation). There are

∑j+1
i=1

(
j+1
i

)
combi-

nations of bands. Then, feature selection is performed in each
band. Since each band has 9 features, there are

∑9
n=1

(
9
n

)
combinations of features. Finally, for each wavelet, we have
a total of

j+1∑
i=1

(
j + 1

i

)
·

9∑
n=1

(
9

n

)
combinations of bands and features. For each of the combi-
nations, a cross validation is performed. Because of the high
time complexity of band and feature selections, we only per-
form them on mother wavelets that exhibit the best perfor-
mance in their respective families.
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Fig. 2. DWT detail coefficients of a sample iEEG signal from focal channel (wavelet: sym6, levels: 7).

4. RESULTS AND DISCUSSION

The DWT-based approach delivers accurate classification per-
formance for seizure focus localization. Table 1 shows con-
sistent accuracy above 80% across all 54 wavelets. Because
we use leave-one-subject-out CV, this DWT-based approach
can overcome individual difference and build robust models.
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Fig. 3. Decomposition Level and Accuracy

4.1. Accuracy and Decomposition Level

The first goal of this research is to find out an optimal level of
wavelet decomposition that yields decent accuracy. The 9 fea-
tures used in each subband are: 1. the maximum coefficient
(denoted as Max), 2. the minimum coefficient (denoted as
Min), 3. the mean of coefficients (denoted as Mean), 4. the
standard deviation (denoted as Std) of coefficients, 5. the
skewness of coefficients, 6. the kurtosis of coefficients, 7. the
squared sum of all coefficients (Energy), 8. normalized stan-
dard deviation, and 9. normalized energy.

Results show a consistent pattern across all mother
wavelets that more levels of decomposition brings little accu-
racy improvement beyond a certain point. Fig. 3 shows how
accuracy changes as decomposition level increases from 1 to
maximum levels on 7 mother wavelets that perform the best
in their families. When levels are low, deeper decomposition
brings significant accuracy improvement. But, after the levels
are about half of its maximum level, the accuracy improve-
ment becomes very limited. In many cases, the accuracy even
drops. For example, for db2 and bior5.5, the accuracy
peaks at level 7. Hence, pursuing more levels of decomposi-
tion, which increases computational cost, will not necessarily
improve performance in turn.

Table 1 shows that given the optimal level of decompo-
sition, all mother wavelets can yield similar accuracy. Most
wavelets obtain accuracy above 80% when being decomposed
to levels 7, 8 or 9. The highest classification accuracy is
81.67% when using rbio6.8 decomposed to level 9. This
provides us a guideline that the accuracy is not sensitive to the
choice of mother wavelet.

We further quantitatively study the relationship between
decomposition level and accuracy. Such relationship follows



two-phase exponential association function very well with
R2 ≥ 0.99 in 95% confidence bounds, as shown by solid
curves in Fig. 3. In the setting of this paper, the two-phase
exponential association function is

y = y0 +A1(1− e−
x
t1 ) +A2(1− e−

x
t2 ),

where y is accuracy, x is decomposition level, y0, A1, A2, t1,
and t2 are 5 regression parameters.

4.2. Band Selection & Feature Selection

The band and feature selections are done on the 7 wavelets
that perform the best in experiments above in 7 respec-
tive families. The best bands and features, and accuracies
achieved using them are given in Table 2.

Among all wavelets, sym6 achieves the highest accuracy
of 83.07% using 7 features from 6 bands. Its coefficients
are given in Fig. 2. Considering the computation complexity,
coif3 is the best choice. coif3 has 82.7% accuracy when
using only 5 features from 6 bands-that is a feature vector of
dimension 30 (6 levels, 25 features from detail coefficients
and 5 from approximation coefficients).

Table 2. Result of feature selection
Wavelet(best

in family)
Highest
accuracy Best features Best bands

bior5.5 82.69% 1, 2, 4, 5, 7, 8, 9 2-7
coif3 82.7% 1, 2, 4, 5, 8 2-7
db2 82.77% 1, 2, 4, 5, 7, 8, 9 1-7

dmey 80.38% 1, 2, 4, 5, 7, 8, 9 1-5
haar 81.43% 1, 2, 4, 5, 7, 8, 9 1-9

rbio6.8 82.72% 1, 4, 5, 7, 8, 9 2-9
sym6 83.07% 1, 2, 4, 5, 6, 8, 9 2-7

Column 3 of Table 2 shows feature combination that yield
the highest accuracy for each wavelet. Max, Std, skewness,
normalized Std and normalized energy are always chosen.
Mean is not chosen in any case. It might be because it hides
the details of coefficients in each band.

According to column 4 of Table 2, bands at lower lev-
els yield the best performance. A pattern can be found from
the correspondence between those bands and EEG rhythms
which are δ(< 4Hz), θ(4 − 7Hz), α(8 − 15Hz), β(16 −
31Hz) and γ(> 31Hz). The best accuracy is achieved when
there are always two DWT bands covering one EEG rhythm.
For example, DWT bands 2 to 7 are the best bands for wavelet
sym6. The correspondence between the DWT bands of sym6
and EEG rhythms is illustrated in Fig. 4. Such pattern still
holds for other wavelets.

The reason why deep DWT bands (e.g., bands 8 and 9 for
sym6) do not contribute to classification accuracy can be ex-
plained from the property of wavelet transform. Deep DWT
bands close to maximum decomposition levels correspond to
low frequencies of EEG such as δ rhythm. Using more fea-
tures from deep DWT bands increases the length of feature
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Fig. 4. Mapping between bands in DWT and human EEG
rhythms for sym6

vectors and the portion of features from low-frequency sig-
nals increases. One explanation is that focal and non-focal
signals do not differ in low frequencies as much as they differ
in higher frequencies. More features from lower frequencies
actually “confuse” the classifier. This also explains why more
levels of decomposition earlier actually decreases the accu-
racy. We will further investigate this as future work.

Results in Table 2 also show that for many wavelets,
band 1 (75-150Hz) does not contribute to accuracy. Because
the upper bound of γ rhythm is usually considered between
80Hz and 100Hz, we can hypothesize that focal and non-
focal EEGs exhibit their major difference in conventional
EEG rhythms. Because the Bern-Barcelona cuts off signals
at 150Hz, it will be interesting to study whether it is still the
case in high-frequency oscillation (HFO) [23] in the future.

5. CONCLUSION

Because of its adaptive resolution property for different fre-
quencies, wavelet transform is gaining its ground in epilepsy-
related EEG classification. However, a long unanswered
question is what the optimal level of decomposition is. In
this paper, we investigate this question on the most difficult
epileptic EEG classification problem, seizure focus localiza-
tion, for 7 families of commonly used wavelets. Our results
show that across all wavelets, the optimal level of decomposi-
tion is around levels 7, 8 and 9. More levels of decomposition
actually decreases the accuracy. Band and feature selec-
tions are further performed on the best-performing wavelet of
each family. From the results, we hypothesize that focal and
non-focal EEGs differ the most at the high-frequency end of
conventional EEG rhythms. We will further investigate this
point in future work.
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