Computing an Entire Solution Path of a Nonconvexly Regularized Convex Sparse Model

Yi Zhang, Isao Yamada (email: {yizhang,isao}@sp.ce.titech.ac.jp) Department of Information & Communications Engineering, Tokyo Institute of Technology

Tokyo Tech

Introduction

1. Sparse least-squares problems:

$$\underset{\boldsymbol{x} \in \mathbb{R}^n}{\text{minimize}} \ J(\boldsymbol{x}) \coloneqq \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda \Psi(\boldsymbol{x}).$$
(1)

 $\boldsymbol{y} \in \mathbb{R}^m$: measurement $\boldsymbol{A} \in \mathbb{R}^{m \times n}$: sensing matrix Ψ : sparse regularizer

- 2. Conventional convex/nonconvex sparse regularizers:
- (1) ℓ_1 -norm (LASSO [1]): convex \bigcirc biased \bigcirc
- (2) the minimax concave (MC [2]) penalty: less biased \bigcirc nonconvex \bigcirc

Algorithmic Results

1. Least Angle Regression for the sGMC model:

The minimum ℓ_2 -norm sGMC solution path $w_*(\lambda)$ can be computed by an extension of the well-known least angle regression (LARS [4]) algorithm:

- (1) In each iteration, the proposed LARS-sGMC algorithm computes (\mathcal{E}, s) corresponding to one linear piece of $w_{\star}(\lambda)$.
- (2) Let $(\mathcal{E}_k, \mathbf{s}_k)$ corresponds to the kth linear piece, then:
 - ► The LARS-sGMC iteration computes the lower breakpoint $\underline{\lambda}(\mathcal{E}_k, \mathbf{s}_k)$ of the current linear piece by solving (NQ).
- **3.** The generalized minimax concave (GMC [3]) penalty:

- Overall convexity condition: if $B \in \mathbb{R}^{p \times n}$ satisfies $A^{\mathsf{T}}A \geq \lambda B^{\mathsf{T}}B$, then $J(\cdot)$ in (1) is convex despite nonconvexity of the GMC penalty.
- We study the scaled GMC (sGMC) model: $\mathbf{B} \coloneqq \sqrt{\frac{\rho}{\lambda}} \mathbf{A}$ with $\rho \in [0, 1)$. (2)
- 4. Key contributions: we prove that the minimum ℓ_2 -norm solution path of the sGMC model is piecewise linear with respect to λ , and can be computed by an iterative algorithm within finite steps.

Theoretical Results

• We conduct certain deletion and insertion operations on indices in \mathcal{E}_k to obtain \mathcal{E}_{k+1} , and change the components of s_k in response to the change of \mathcal{E}_k to yield s_{k+1} .

See Algorithm 1 in the extended version of this paper [5] for details.

2. Properties of LARS-sGMC:

- We prove the correctness and finite termination of LARS-sGMC under a mild assumption.
- (2) The complexity of the kth iteration is $\mathcal{O}\left(m\left|\mathcal{E}_k\right|^2 + \left|\mathcal{E}_k\right|^3\right)$.
- (3) If we set $\rho = 0$ in the sGMC model, then LARS-sGMC reduces to the conventional LARS [4] algorithm for LASSO.

Experiments

We demonstrate the correctness, efficiency and practical utility for regularization parameter tuning of the LARS-sGMC algorithm.

1. Optimality condition of the sGMC model:

 $\boldsymbol{x} \in \mathbb{R}^n$ is a solution of the sGMC model if and only if there exists $\boldsymbol{z} \in \mathbb{R}^n$, such that $\boldsymbol{w} \coloneqq \begin{bmatrix} \boldsymbol{x}^{\mathsf{T}} & \boldsymbol{z}^{\mathsf{T}} \end{bmatrix}'$ satisfies

$$\mathbf{0} \in \mathbf{C}^T (\mathbf{D}\mathbf{C}\mathbf{w} - \mathbf{b}) + \lambda \partial (\|\cdot\|_1)(\mathbf{w}), \qquad (2)$$

where $\boldsymbol{C} \coloneqq \text{blkdiag}(\boldsymbol{A}, \boldsymbol{A}), \boldsymbol{b} \coloneqq \begin{bmatrix} \boldsymbol{y}^{\mathsf{T}} & \boldsymbol{0}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \boldsymbol{D} \coloneqq \begin{bmatrix} (1-\rho)\boldsymbol{I} & \rho \boldsymbol{I} \\ -\rho \boldsymbol{I} & \rho \boldsymbol{I} \end{bmatrix}.$

We call $\boldsymbol{w} \in \mathbb{R}^{2n}$ an *extended solution* if it satisfies (2). In this paper, we focus on the minimum ℓ_2 -norm extended solution $w_{\star}(\lambda)$.

2. Properties of the minimum ℓ_2 -norm extended solution:

(1) $w_{\star}(\lambda)$ is piecewise linear in λ with finite $(\leq 3^{2n})$ linear pieces.

Related Publications

- Within every linear piece of $w_{\star}(\lambda)$, there exist uniquely a combina-(2)tion of $\mathcal{E} \subset \{1, 2, ..., 2n\}$ and $s \in \{-1, 0, 1\}^{2n}$ such that:
 - $\operatorname{supp}(w_{\star}(\lambda)) \equiv \mathcal{E}, \operatorname{sign}(w_{\star}(\lambda)) \equiv s \text{ are constant}.$
 - $w_{\star}(\lambda) \equiv \hat{w}_{EQ}(\mathcal{E}, s, \lambda)$, the latter is the least-squares solution of

 $\begin{cases} (\forall i \in \mathcal{E}) & c_i^T (\boldsymbol{b} - \boldsymbol{D} \boldsymbol{C} \boldsymbol{w}) = \lambda s_i, \\ (\forall j \in \neg \mathcal{E}) & w_j = 0, \end{cases}$ (EQ-a)(EQ-b)

The duration of λ for a linear piece is the set of $\lambda > 0$ satisfying

(NQ-a) $\begin{cases} (\forall i \in \mathcal{E}) & s_i w_i \ge 0. \\ (\forall j \in \neg \mathcal{E}) & |c_i^T (\boldsymbol{b} - \boldsymbol{D} \boldsymbol{C} \boldsymbol{w})| \le \lambda, \end{cases}$ (NQ-b)

- [1] R. Tibshirani, "Regression Shrinkage and Selection Via the Lasso," J. R. Stat. Soc., B: Stat. Methodol., vol. 58, no. 1, pp. 267–288, 1996.
- [2] C. Zhang, "Nearly unbiased variable selection under minimax concave penalty," Ann. Stat., vol. 38, no. 2, pp. 894 – 942, 2010.
- [3] I. Selesnick, "Sparse Regularization via Convex Analysis," *IEEE Trans.* Signal Process., vol. 65, no. 17, pp. 4481–4494, 2017.
- [4] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Ann. Stat., vol. 32, no. 2, pp. 407 – 499, 2004.
- [5] Y. Zhang and I. Yamada, "Solution-Set Geometry and Regularization Path of a Nonconvexly Regularized Convex Sparse Model," Mar 2024, arXiv: 2311.18438 [math].