
Learning Graphs and Simplicial Complexes

from Data

Andrei Buciulea

Joint work with E. Isufi, G. Leus and A. G. Marques

April 17, ICASSP 2024

A. Buciulea Learning Graphs and Simplicial Complexes from Data 1 / 14



Motivating Examples: Networked Data

▶ Huge data sets are generated in networks (transportation, biological, brain,
computer, social networks)

▶ Data structure carries critical information about the nature of the data

▶ Modelling the data structure using graphs
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Graph Signal Processing (GSP)

▶ Consider an undirected weighted graph G(V, E ,W)

⇒ V, E , W → set of nodes, edges, weights

▶ Associated with G→Graph-Shift Operator (GSO)

⇒ S ∈ RN×N , Sij ̸= 0 for i = j and (i , j) ∈ E

⇒ Ex: Adjacency A, Laplacian L = D− A...

▶ Define a signal x ∈ RN on top of the graph

⇒ xi = value of graph signal (GS) at node i

▶ Sometimes the graph is not enough to explain the data structure

⇒ Need for structures more complex than a graph

⇒ Use Simplicial Complexes (SCs)
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What is a Simplicial Complex?

▶ Mathematical structure that generalizes the
concept of a graph to higher dimensions

▶ Building blocks

⇒Vertices, edges, triangles, tetrahedra, etc

▶ Graphs as 1-dimensional simplicial complexes

▶ Social structure, simplicial complex
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Graph Learning: Motivation and Context

Network topology inference from nodal observations

“Given a collection X := [x1, ..., xR ] of graph signal observations
supported on the unknown graph G(V, E ,A) find an optimal S”

▶ This work:

⇒ Use data to learn both, the graph and the higher-order interactions

⇒ Modelling data and graph using Autoregressive Graph Volterra Models
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Related work (I): Graph Learning

▶ Goal: use X=[x1, ..., xR ]∈RN×R to learn S with Σ̂ = 1
RXX

T

▶ Correlation networks ⇒ X supported on G

Ŝ ≈ Σ̂ = E
[
XXT

]
(Ŝ is a thresholded version of Σ̂)

▶ Partial correlation networks ⇒ X i.i.d. ∼ N (0,Σ) GL

Ŝ = argmin
S⪰0,S∈SΘ

− log(det(S)) + tr(Σ̂S) + ρh(S)[Fr.08]

▶ Graph-stationary diffusion processes⇒X st. w.r.t S GSR

Ŝ = argmin
S∈S

∥S∥0 s. to Σ̂S = SΣ̂ [Segarra17]

▶ Related to graphical Lasso:

Sparse SEM: Ŝ = argmin
S∈S

∥X− SX∥2F + g(S)[Bazerque13]
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Related work (II): Learning higher-order interactions

▶ Goal: use X and S to learn higher-order interactions

▶ Vietoris–Rips complex approach [Zomorodian10] RC

⇒ Form topological space from distances between points

⇒ Learn SCs from the data (i.e. Σ̂ = E
[
XXT

]
)

▶ Learning SCs from data [Barbarossa20] MTV-SC

⇒ Specific nature edge data x1 = B⊤
1 s0 + sH + B2s2 +w

⇒ Learn SCs (B2) from edge data (X1) and graph (B1)

▶ Learning hypergraphs from data [Tang23] HGSL

⇒ Graph structure is learned from node data

⇒ Hyperedges are obtained from the learned graph

7 / 14



Problem Formulation: Data Modelling

▶ Data Modelling: Autoregressive Graph Volterra Model of order 2

X = H1X+H2Y + V + E, with Y = X⊙ X ∈ RN2×R

H1∈RN×N pairwise interactions, H2∈RN×N2

node-pair interactions
V ∈ RN×R exogenous variable, E ∈ RN×R zero-mean white noise

• H1X is a linear combination of the signals in the other nodes

• H2Y is a product of the signals in the other tuples of nodes

▶ Example of signal representation in terms of H1 and H2

x2 = H1[2, 1]x1 +H1[2, 4]x4 +H2[2, (1, 4)]x1x4 +H2[2, (4, 1)]x1x4 + v2 + e2.

Part of x2 is described by:

⇒ node-to-node interactions (H1)

⇒ node-to-pair interactions (H2)
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Problem Formulation: Graph & SC Modelling

▶ Recalling the signal modelling

X = H1X+H2Y + V + E, with Y = X⊙ X.

▶ Graph Modelling: pairwise interactions H1.

⇒ H1 = {H1 ≥ 0,B1 ◦H1 = 0, H1 = H⊤
1 }

⇒ Pos. weights, no self-loops (B1= I), symmetry.

▶ SC Modelling: node-to-pair interactions H2.

⇒ H2 = {H2 ≥ 0,B2 ◦H2 = 0}

⇒ Positive weights, no self-loops
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Proposed Approach

Proposed formulation for learning graphs and simplicial complexes

(Ĥ1, Ĥ2) = argmin
H1∈H1,H2∈H2

∥X−H1X−H2Y−V∥2F + α∥H1∥1 + β∥H2∥1

s. t. H2[k , (i , j)] ≤ θ1(H1[k , i ]H1[k, j ]H1[i , j ]);

⇒ ∥X−H1X−H2Y−V∥2F → Fitting X to the considered model

⇒ ∥H1∥1 → Controlling the number of node-to-node interactions with α

⇒ ∥H2∥1 → Controlling the number of node-to-pair interactions with β

⇒ H2[k, (i , j)] ≤ θ1(H1[k , i ]H1[k , j ]H1[i , j ])

→ Filled triangle can exist if nodes i , j , and k are interconnected

▶ Non-convex formulation because of the trilinear constraint

⇒ Next → convex formulation to address non-convexities
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Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

(Ĥ1, Ĥ2) = argmin
H1∈H1,H2∈H2

∥X−H1X−H2Y − V∥2F + α∥H1∥1 + β∥H2∥1

+ γ

N∑
i,j,k=1

∥Q(i,j,k) ◦ [H1,H2]∥F

▶ Entries of binary matrix Q(i,j,k) ∈ RN×(N+N2) involving three nodes

⇒ Node-node interactions

Q(i,j,k)[i , j ] = 1
Q(i,j,k)[i , k] = 1
Q(i,j,k)[j , k] = 1

⇒ Node-pair interactions

Q(i,j,k)[i ,Nj + k] = 1
Q(i,j,k)[j ,Ni + k] = 1
Q(i,j,k)[k,Ni + j ] = 1

▶ Group entries of H1 and H2 that participate in a triangle using Q(i,j,k)

▶ Controlling the number of filled triangles (H2) with β
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Synthetic Data Results

▶ Estimation performance (err(H1)) of different algorithms as R increases

▶ Normalized error when estimating filled triangles (err(H2))

Alg. \ R 50 100 200 300 400 500

MTV-SC 1.505 1.496 1.497 1.493 1.494 1.490
RC 0.790 0.767 0.761 0.753 0.748 0.751
VGR 0.559 0.428 0.294 0.214 0.165 0.133
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Real Data Results

▶ Estimation performance (F-score) of different algorithms as N increases

▶ F-score and err(H2) when estimating filled triangles

F-score Error
Alg. \ N 15 20 25 15 20 25

MTV-SC 0.093 0.058 0.056 7.418 7.536 7.530
RC 0.667 0.650 0.585 1.350 2.101 2.837
VGR 0.718 0.676 0.625 0.548 0.558 0.649
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Conclusions

▶ New scheme that jointly learns graphs and simplicial complexes

▶ Key assumptions:

⇒ Model data using autoregressive graph Volterra models

⇒ Model network as graph (H1) and simplicial complexes (H2)

▶ Jointly learn from data node-pair interactions and filled triangles

▶ Challenge: non-convex approach due to filled triangle modelling

⇒ Convex approach using group sparsity term

▶ Encouraging results in both synthetic and real data sets

▶ THANKS!

⇒ Feel free to contact me for questions and code andrei.buciulea@urjc.es
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