Learning Graphs and Simplicial Complexes

from Data

Joint work with E. Isufi, G. Leus and A. G. Marques
U. Universidad. April 17, ICASSP 2024

Motivating Examples: Networked Data

- Huge data sets are generated in networks (transportation, biological, brain, computer, social networks)
- Data structure carries critical information about the nature of the data
- Modelling the data structure using graphs

Interpolate a brain signal
from local observations

Smooth an observed network profile

Compress a signal in

 an irregular domain

Predict the evolution of a network process source of a rumor

Infer the topology where the signals reside

Graph Signal Processing (GSP)

- Consider an undirected weighted graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$ $\Rightarrow \mathcal{V}, \mathcal{E}, \mathcal{W} \rightarrow$ set of nodes, edges, weights
- Associated with $\mathcal{G} \rightarrow$ Graph-Shift Operator (GSO)

$$
\begin{aligned}
& \Rightarrow \mathbf{S} \in \mathbb{R}^{N \times N}, S_{i j} \neq 0 \text { for } i=j \text { and }(i, j) \in \mathcal{E} \\
& \Rightarrow \text { Ex: Adjacency } \mathbf{A} \text {, Laplacian } \mathbf{L}=\mathbf{D}-\mathbf{A} \ldots
\end{aligned}
$$

- Define a signal $\mathbf{x} \in \mathbb{R}^{N}$ on top of the graph
 $\Rightarrow x_{i}=$ value of graph signal (GS) at node i
- Sometimes the graph is not enough to explain the data structure
\Rightarrow Need for structures more complex than a graph
\Rightarrow Use Simplicial Complexes (SCs)

What is a Simplicial Complex?

- Mathematical structure that generalizes the concept of a graph to higher dimensions
- Building blocks
\Rightarrow Vertices, edges, triangles, tetrahedra, etc
- Graphs as 1-dimensional simplicial complexes
- Social structure, simplicial complex

Graph Learning: Motivation and Context

Network topology inference from nodal observations
"Given a collection $\mathbf{X}:=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{R}\right]$ of graph signal observations supported on the unknown graph $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathbf{A})$ find an optimal \mathbf{S} "

- This work:
\Rightarrow Use data to learn both, the graph and the higher-order interactions
\Rightarrow Modelling data and graph using Autoregressive Graph Volterra Models

Related work (I): Graph Learning

- Goal: use $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{R}\right] \in \mathbb{R}^{N \times R}$ to learn \mathbf{S} with $\hat{\boldsymbol{\Sigma}}=\frac{1}{R} \mathbf{X X}^{\top}$
- Correlation networks $\Rightarrow \mathbf{X}$ supported on \mathcal{G}

$$
\hat{\mathbf{S}} \approx \hat{\boldsymbol{\Sigma}}=\mathbb{E}\left[\mathbf{X X}^{\top}\right](\hat{\mathbf{S}} \text { is a thresholded version of } \hat{\boldsymbol{\Sigma}})
$$

- Partial correlation networks $\Rightarrow \mathbf{X}$ i.i.d. $\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}) \mathrm{GL}$

$$
\hat{\mathbf{S}}=\underset{\mathrm{S} \succeq 0, \mathbf{S} \in \mathcal{S}_{\Theta}}{\operatorname{argmin}}-\log (\operatorname{det}(\mathbf{S}))+\operatorname{tr}(\hat{\mathbf{\Sigma}} \mathbf{S})+\rho \mathrm{h}(\mathbf{S})[\mathrm{Fr} .08]
$$

- Graph-stationary diffusion processes $\Rightarrow \mathbf{X}$ st. w.r.t S GSR

$$
\hat{\mathbf{S}}=\underset{\mathbf{S} \in \mathcal{S}}{\operatorname{argmin}}\|\mathbf{S}\|_{0} \quad \text { s. to } \quad \hat{\boldsymbol{\Sigma}} \mathbf{S}=\mathbf{S} \hat{\boldsymbol{\Sigma}} \quad[\text { Segarra17] }
$$

- Related to graphical Lasso:

Sparse SEM: $\hat{\mathbf{S}}=\underset{\mathbf{S} \in \mathcal{S}}{\operatorname{argmin}}\|\mathbf{X}-\mathbf{S X}\|_{F}^{2}+\mathrm{g}(\mathbf{S})$ [Bazerque13]

$$
\stackrel{s}{\mathrm{E}} \mathcal{S}
$$

Related work (II): Learning higher-order interactions

- Goal: use \mathbf{X} and \mathbf{S} to learn higher-order interactions
- Vietoris-Rips complex approach [Zomorodian10] RC
\Rightarrow Form topological space from distances between points
\Rightarrow Learn SCs from the data (i.e. $\hat{\boldsymbol{\Sigma}}=\mathbb{E}\left[\mathbf{X X}^{\top}\right]$)
Simplicial complex

Hypergraph
\Rightarrow Learn SCs (\mathbf{B}_{2}) from edge data (\mathbf{X}_{1}) and graph (\mathbf{B}_{1})

- Learning hypergraphs from data [Tang23] HGSL
\Rightarrow Graph structure is learned from node data
\Rightarrow Hyperedges are obtained from the learned graph

Problem Formulation: Data Modelling

- Data Modelling: Autoregressive Graph Volterra Model of order 2

$$
\mathbf{X}=\mathbf{H}_{1} \mathbf{X}+\mathbf{H}_{2} \mathbf{Y}+\mathbf{V}+\mathbf{E}, \text { with } \mathbf{Y}=\mathbf{X} \odot \mathbf{X} \in \mathbb{R}^{N^{2} \times R}
$$

$\mathrm{H}_{1} \in \mathbb{R}^{N \times N}$ pairwise interactions, $\mathrm{H}_{2} \in \mathbb{R}^{N \times N^{2}}$ node-pair interactions
$\mathbf{V} \in \mathbb{R}^{N \times R}$ exogenous variable, $\mathbf{E} \in \mathbb{R}^{N \times R}$ zero-mean white noise

- $H_{1} \mathbf{X}$ is a linear combination of the signals in the other nodes
- $\mathrm{H}_{2} \mathbf{Y}$ is a product of the signals in the other tuples of nodes
- Example of signal representation in terms of \mathbf{H}_{1} and \mathbf{H}_{2}

$$
x_{2}=\mathbf{H}_{1}[2,1] x_{1}+\mathbf{H}_{1}[2,4] x_{4}+\mathbf{H}_{2}[2,(1,4)] x_{1} x_{4}+\mathbf{H}_{2}[2,(4,1)] x_{1} x_{4}+v_{2}+e_{2} .
$$

Part of x_{2} is described by:
\Rightarrow node-to-node interactions (H_{1})
\Rightarrow node-to-pair interactions $\left(\mathrm{H}_{2}\right)$

Problem Formulation: Graph \& SC Modelling

- Recalling the signal modelling

$$
\mathbf{X}=\mathbf{H}_{1} \mathbf{X}+\mathbf{H}_{2} \mathbf{Y}+\mathbf{V}+\mathbf{E}, \text { with } \mathbf{Y}=\mathbf{X} \odot \mathbf{X} .
$$

- Graph Modelling: pairwise interactions H_{1}.
$\Rightarrow \mathcal{H}_{1}=\left\{\mathbf{H}_{1} \geq \mathbf{0}, \mathbf{B}_{1} \circ \mathbf{H}_{1}=\mathbf{0}, \mathbf{H}_{1}=\mathbf{H}_{1}^{\top}\right\}$

\Rightarrow Pos. weights, no self-loops ($\mathbf{B}_{1}=\mathbf{I}$), symmetry.
- SC Modelling: node-to-pair interactions H_{2}.

$$
\Rightarrow \mathcal{H}_{2}=\left\{\mathbf{H}_{2} \geq \mathbf{0}, \mathbf{B}_{2} \circ \mathbf{H}_{2}=\mathbf{0}\right\}
$$

\Rightarrow Positive weights, no self-loops

H1	1	2	3	4	5
1					
2					
3					
4					
5					

H2	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)			(3,3)	(3,4)	(3,5)		(4,2)	(4,3)	(4,4)	(4,5)	(5,1)	$(5,2)$	(5,3)	$(5,4)$	$(5,5)$
1																									
2																									
3																									
4																									
5																									

Proposed Approach

Proposed formulation for learning graphs and simplicial complexes
$\left(\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}\right)=\underset{\mathbf{H}_{1} \in \mathcal{H}_{1}, \mathbf{H}_{2} \in \mathcal{H}_{2}}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{H}_{1} \mathbf{X}-\mathbf{H}_{2} \mathbf{Y}-\mathbf{V}\right\|_{F}^{2}+\alpha\left\|\mathbf{H}_{1}\right\|_{1}+\beta\left\|\mathbf{H}_{2}\right\|_{1}$
s. t.
$\mathrm{H}_{2}[k,(i, j)] \leq \theta \mathbb{1}\left(\mathrm{H}_{1}[k, i] \mathrm{H}_{1}[k, j] \mathrm{H}_{1}[i, j]\right) ;$
$\Rightarrow\left\|\mathbf{X}-\mathbf{H}_{1} \mathbf{X}-\mathbf{H}_{2} \mathbf{Y}-\mathbf{V}\right\|_{F}^{2} \rightarrow$ Fitting \mathbf{X} to the considered model
$\Rightarrow\left\|\mathbf{H}_{1}\right\|_{1} \rightarrow$ Controlling the number of node-to-node interactions with α
$\Rightarrow\left\|\mathbf{H}_{2}\right\|_{1} \rightarrow$ Controlling the number of node-to-pair interactions with β
$\Rightarrow \mathbf{H}_{2}[k,(i, j)] \leq \theta \mathbb{1}\left(\mathbf{H}_{1}[k, i] \mathbf{H}_{1}[k, j] \mathbf{H}_{1}[i, j]\right)$
\rightarrow Filled triangle can exist if nodes i, j, and k are interconnected

- Non-convex formulation because of the trilinear constraint
\Rightarrow Next \rightarrow convex formulation to address non-convexities

Proposed Convex Approach

Convex formulation for learning graphs and simplicial complexes

$$
\begin{gathered}
\left(\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}\right)=\underset{\mathbf{H}_{1} \in \mathcal{H}_{1}, \mathbf{H}_{2} \in \mathcal{H}_{2}}{\operatorname{argmin}}\left\|\mathbf{X}-\mathbf{H}_{1} \mathbf{X}-\mathbf{H}_{2} \mathbf{Y}-\mathbf{V}\right\|_{F}^{2}+\alpha\left\|\mathbf{H}_{1}\right\|_{1}+\beta\left\|\mathbf{H}_{2}\right\|_{1} \\
+\gamma \sum_{i, j, k=1}^{N}\left\|\mathbf{Q}^{(i, j, k)} \circ\left[\mathbf{H}_{1}, \mathbf{H}_{2}\right]\right\|_{F}
\end{gathered}
$$

- Entries of binary matrix $\mathbf{Q}^{(i, j, k)} \in \mathbb{R}^{N \times\left(N+N^{2}\right)}$ involving three nodes
\Rightarrow Node-node interactions
\Rightarrow Node-pair interactions
$\mathbf{Q}^{(i, j, k)}[i, j]=1$

$$
\mathbf{Q}^{(i, j, k)}[i, N j+k]=1
$$

$$
\mathbf{Q}^{(i, j, k)}[i, k]=1
$$

$$
\mathbf{Q}^{(i, j, k)}[j, N i+k]=1
$$

$$
\mathbf{Q}^{(i, j, k)}[j, k]=1
$$

$$
\mathbf{Q}^{(i, j, k)}[k, N i+j]=1
$$

- Group entries of \mathbf{H}_{1} and \mathbf{H}_{2} that participate in a triangle using $\mathbf{Q}^{(i, j, k)}$
- Controlling the number of filled triangles $\left(\mathrm{H}_{2}\right)$ with β

Synthetic Data Results

- Estimation performance $\left(\operatorname{err}\left(\mathbf{H}_{1}\right)\right)$ of different algorithms as R increases

- Normalized error when estimating filled triangles $\left(\operatorname{err}\left(\mathbf{H}_{2}\right)\right)$

Alg. $\backslash R$	50	100	200	300	400	500
MTV-SC	1.505	1.496	1.497	1.493	1.494	1.490
RC	0.790	0.767	0.761	0.753	0.748	0.751
VGR	0.559	0.428	0.294	0.214	0.165	0.133

Real Data Results

- Estimation performance (F-score) of different algorithms as N increases

- F-score and $\operatorname{err}\left(\mathrm{H}_{2}\right)$ when estimating filled triangles

F-score				Error		
Alg. $\backslash N$	15	20	25	15	20	25
MTV-SC	0.093	0.058	0.056	7.418	7.536	7.530
RC	0.667	0.650	0.585	1.350	2.101	2.837
VGR	0.718	0.676	0.625	0.548	0.558	0.649

Conclusions

- New scheme that jointly learns graphs and simplicial complexes
- Key assumptions:
\Rightarrow Model data using autoregressive graph Volterra models
\Rightarrow Model network as graph $\left(\mathrm{H}_{1}\right)$ and simplicial complexes $\left(\mathrm{H}_{2}\right)$
- Jointly learn from data node-pair interactions and filled triangles
- Challenge: non-convex approach due to filled triangle modelling
\Rightarrow Convex approach using group sparsity term
- Encouraging results in both synthetic and real data sets
- THANKS!
\Rightarrow Feel free to contact me for questions and code andrei.buciulea@urj..es

