Tag Antenna Structure Calibrated Backscattering Signal Detection

Amus Chee Yuen Goay*, *Deepak Mishra**, Ross Murch[†], and Aruna Seneviratne* *University of New South Wales, Australia

[†]Hong Kong University of Science and Technology, Hong Kong

Introduction

Backscatter-Assisted IoT Network for 6G

- The advent of 6G networks necessitates massive IoT nodes deployment for enhancing service capabilities
- Conventional wireless communication technologies are **power-intensive and costly** to integrate into IoT nodes
- *Backscattering* emerges as a promising **sustainable** solution for data transmission, offering cost-effective deployment of massive IoT

Advantage of Passive Backscattering

✓ Low-cost & Small Form Factor

Motivation

- The widely used Minimum Scattering Antenna (MSA) \bullet assumption, $A_s = 1$, is **impractical**
- For given unit $|\Gamma_{u}|$, the surface area enclosed by red (blue) circle representing feasible A_{c} - Γ (1- Γ)
- Amplitude and Phase of backscattered signal is influenced by A_s

Fig. 2: Complex plane for $A_s - \Gamma$

- Value of A, has no effect on the differential radar cross section, which depends on $|\Gamma_1 - \Gamma_2|$, but it significantly changes the magnitude of the backscattered signal
- Backscatter Communication (BackCom) eliminates active RF components & batteries, simplifying tag circuitry
- ✓ *High Energy Efficiency & Sustainable*
- Utilizing backscattering reduces overall energy consumption, promoting Green Communication and sustainability goals

Background & System Model

Fig. 1: Bistatic BackCom system with binary load modulation

BackCom System and Theory:

• In the forward link, the emitter continuously transmits RF carrier When the RF carrier impinges the tag's antenna, part of the power is harvested, and the remaining power is 'reflected' back • The backscattering field is given as: $\vec{E}_{\rm b} \triangleq \frac{\vec{E}_{\rm a}}{I_{\rm a}} I_{\rm m} (A_{\rm s} - \Gamma)$

Selecting the same Γ for complex A_s and $A_s = 1$ leads to different outcomes, resulting in inaccurate predictions of backscattered signal characteristics

Fig. 3: Impact of A_s **on** $|A_s - \Gamma|$

- \vec{E}_a : Backscattering field when tag's antenna current is I_a , I_m : Matched load current, A_s : Structural mode scattering dependent term, Γ : Reflection coefficient
- Tag modulates backscattered signal with data by varying the current flow of its antenna by switching load impedances (Z_{L1}, Z_{L2})

Backscatt	tering Field	

Structural Mode Scattering (A_s) + Antenna Mode Scattering (Γ)

REMARK: Proposed SST effectively mitigates the challenges caused by the complex A_s , enabling the assumption of $A_s=1$ to be applicable across all BackCom systems

Numerical Results

(b) $A_{\rm s} = 0.6047 + j0.5042$ (a) $A_{\rm s} = 1$ (b) $A_{\rm s} = 0.6047 + j0.5042$ **Fig. 6: Impact of** Γ **on** \emptyset

- (a) $A_{\rm s} = 1$ **Fig. 5: Impact of** Γ **on** \mathcal{A}
- $\mathcal{A} = |A_s \Gamma|, \ \emptyset = \arg(A_s \Gamma), \ \Gamma = \Gamma_a + j\Gamma_b, \ |\Gamma| \in [0,1]$
- The results in Fig. 5 reveal that \mathcal{A} exhibits **significant** variability with Γ and A_s \bullet
- Maximum of \mathcal{A} is greater when $A_s = 1$, highlighting the **advantage** of preserving the \bullet MSA assumption
- Likewise, in Fig. 6, the phase \emptyset varies with Γ and A_s , where $\emptyset \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for $A_s = 1$, and $\emptyset \in [-\pi, \pi]$ for complex A_s

Conclusion

- \checkmark Analyzed the structural mode scattering dependent parameter A_s and its impact on the BackCom system • Proposed an innovative signal subtraction technique to **mitigate** the discrepancies caused by the $A_s = 1$ assumption
- ✓ Acknowledge the Australian Research Council's Discovery Early Career Researcher Award (DE230101391) for support

Fig. 7: Insight on \mathcal{A}^2 **for various modulation index** m_{th}

- The received signal quality **depends** on the power of the backscattered signal $P_{\mathrm{b}i} \triangleq S\sigma_i \propto \left| \vec{E}_{\mathrm{b}i} \right|^2 \propto |A_s - \Gamma|^2 = \mathcal{A}^2$
- Higher *P_{bi}* enhances the reliability and efficiency of BackCom
- Fig. 7 shows the \mathcal{A}^2 for different A_s values, using the optimal reflection coefficient that **maximises** the harvested power at the ASK-modulated tag under MSA assumption
- $A_s = 1$ results in highest \mathcal{A}^2 for all m_{th} and consistently remains within the feasible region ($P_{bi} \ge P_{b,min}$), where the receiver can successfully decode and retrieve the data from noise