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PROBLEM STATEMENT
▪ multi-frame speech enhancement algorithms provide good noise reduction 

and low speech distortion  
▪ multi-frame filters can be estimated using deep neural networks (DNNs) with 

or without imposing structure on the filter coefficients 
 multi-frame minimum variance distortionless response (MVDR) filter→

this poster: different procedures to estimate the parameters 
required by the multi-frame MVDR filter

▪ minimizes output inference power spectral density while leaving 
correlated speech component undistorted: 

 

▪  is highly time-varying and difficult to estimate  rewrite using more 

accessible noisy & interference covariance matrices and a-priori SNR : 
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MULTI-FRAME MVDR FILTER

main objective: estimate , , and Φy,t Φi,t ξt

DATASET
based on deep noise suppression (DNS) challenge dataset [2]:
training & validation evaluation
anechoic English speech (LibriSpeech) anechoic English speech (Uni Graz)
noise: Audioset, Freesound, DEMAND noise: Freesound

SNRs from 0 dB to 19 dB
100 h 150 utterances

SETTINGS
▪ ; STFT:  window, 8 ms frame length, 75 % overlap 
▪ filter length  (temporal context of 16 ms) 
▪ features: log-magnitude, cos and sin of phase of noisy microphone signals 
▪ DNN architecture: causal temporal convolutional networks (TCNs) [3] 

▪ 2 stacks of 4 layers; hidden dimensions chosen to yield similar number 
of parameters across compared algorithms (ca. 5 M) 

▪ temporal receptive field size: 128 ms 
▪ scale-invariant signal-to-distortion ratio (SI-SDR) loss function 
▪ trained using AdamW optimizer for  150 epochs (with early stopping) 
▪ minimum gain of -17 dB during evaluation 
▪ diagonal loading applied to estimated covariance matrices before inversion 
▪ baseline algorithms: direct estimation of mask or multi-frame filter [4]

fs = 16 kHz Hann
N = 5

≤

DEEP MULTI-FRAME MVDR FILTER
▪ integrate multi-frame MVDR filter into end-to-end supervised learning 

framework [5]: , , and  estimated using DNNs: Φy,t Φi,t ξt
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i) Recursive Smoothing (RS)
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ii) Cholesky Decomposition (CD)
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iv) Rank-1 (R1)
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▪ imposes dominant principal subspace 
▪ circumvent explicit matrix inversion  lower computational complexity→
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iii) Vandermonde Factorization (PDT)
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▪ noisy STFT-domain vector  

▪ apply complex-valued multi-frame filter  to  frames: 

 
▪ assumptions: 

1.  decompose speech vector  into correlated 
and uncorrelated components [1]: 

 
2. uncorrelated component is considered interference:  
3. independent components:  

▪ speech inter-frame correlation (IFC) vector describes correlation between 
current and  most recent time frames: 
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1.  Speech Enhancement Performance

RESULTS

▪ deep MFMVDR employing positive semi-definite matrix structure (CD) and 
rank-1 matrix structure (R1) yield highest performance 

▪ baseline algorithms are outperformed: direct estimation of real-valued 
mask, complex-valued mask, or multi-frame filter (DMFF) [4] 

▪ recursive smoothing (RS) and positive semi-definite Toeplitz structure (PDT) 
yield much worse performance

2.  Computational Complexity

▪ RTF: ratio between 
processing time and signal 
duration 

▪ all RTFs < 1 
▪ deep MFMVDR filters more 

complex than baseline 
algorithms, primarily due to 
additional linear algebra 
operations in MFMVDR filter

rank-1 matrix structure yields good trade-off 
between speech enhancement / complexity


