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analytically intractable.
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Problem Statement

Barankin Bound
Let,

θ ∈ Θ ⊆ R be a parameter.
X ∈ Υ ⊆ Rdx be a measurement vector.
ψ ∈ Θ be a test point.

Then for any unbiased estimator θ̂ (·) we have:

Cov
(
θ̂

)
≜ EX

[(
θ̂ (X) − θ

)2
]

≥ BB ≜
∆2

b (∆) − 1 , (1)

b (∆) ≜ EX

[
η2 (X;θ,∆)

]
, (2)

where,
∆ = ψ − θ is the deviation of the test point from parameter θ.
η (x;θ,∆) ≜ fX (x;∆+θ)

fX (x;θ) is the likelihood ratio.
Our goal is to study the threshold effect (using the Barankin bound) when
fX (x;θ) is completely unknown but a data set DT = {xi,θi}ni=1 of samples is
available.
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Learned Generative Barankin Bound

Approach
Stage 1: Learn a generative model of the true measurement distribution fX (x;θ)
using the dataset DT = {xi,θi}Nv

i=1 of Nv measurement-parameter sample pairs.
Stage 2: Use the learned generative model to approximate the Barankin bound.

Learn
Normalizing Flow

Flow
Γ (θ)

Generative
Barankin Bound

Dataset

Figure: Approach Overview
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Learned Generative Barankin Bound

Approach
Stage 1: Learn a conditional normalizing flow (CNF) of the measurement
distribution fX (x;θ) using the dataset DT = {xi,θi}ND

i=1 of ND
measurement-parameter sample pairs.

Conditional Normalizing Flow (CNF)
Train a conditional generator G (Z;θ) that has a conditioning input θ and
random input Z ∼ N (0, I) to simulate the measurement process:

Γ (θ) ≜ G (Z;θ) approximately ∼ fX (x;θ) (3)

The trained G (a neural network) is a deterministic function of θ and Z.
Z is random =⇒ the generative model is a random mapping from θ to
Γ (θ).
G is invertible w.r.t. Z, with inverse ν (γ,θ) (the normalizing flow).
Training G: maximizes the likelihood of the data DT .
Equivalent to minimizing (a sample estimate of) the KL divergence, for fixed
θ, between the generated samples G (Z;θ) and the true distribution
fX (x;θ).
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Learned Generative Barankin Bound

Approach
Stage 2: Use the learned conditional normalizing flow to approximate the
Barankin bound. By relying on the invertibley of G and ν and the transformation
of random variable:

fΓ (γ;θ) = fZ (ν (γ;θ))
∣∣detJν (γ;θ)

∣∣ (4)

Approximating the Barankin bound
We generate DG using G:

DG = {γn = G (zn;θ) |γn ∈ Υ̃, zn ∼ N (0, I)}NDG
n=1 . (5)

Using DG we compute the Barankin matrix using an empirical mean:

b (ψ) ≜ EX

[
η2 (X;θ,∆)

]
≈ b (∆) ≜ 1∣∣DG

∣∣ ∑
γ∈DG︸ ︷︷ ︸

Empirical Mean

η̃2 (γ;θ,∆)︸ ︷︷ ︸
Approximated LR

, (6)

where η̃ (γ;θ,∆) = fΓ(γ;θ+∆)
fΓ(γ;θ) is likelihood ratio approximation.
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Learned Generative Barankin Bound

Regions
To improve the stability of the learned Generative
Barankin bound, we divide it into three regions:

Asymptotic (Converge to the CRB)
No Information
Transition

Figure: GBB Regions

Stable Generative Barankin Bound

BBs (∆) =


GCRB

∣∣∆∣∣ ≤
√

GCRB

∆2 b (∆) − 1 ≤ 1 &
∣∣∆∣∣ > √

GCRB
∆2

b(∆)−1
otherwise

where GCRBa ≈ CRB is the Generative Cramér Rao bound.
aHabi, H. V., Messer, H., & Bresler, Y. (2023). Learning to bound: A generative Cramér-Rao

bound. IEEE Transactions on Signal Processing. Also will be preseted in this ICASSP, Poster
SPTM-P8.4, Fri, 19, 13:10 - 15:10
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Direction-Of-Arrival Normalizing Flow

We demonstrate the Generative Barankin Bound on Direction Of Arrival (DOA)
problems.

Direction-Of-Arrival Problem
Consider the case of a single source with uniform linear array (of size M):

Xn = a(θ)Sn +Wn, (7)

where,
[a(θ)]m = exp

( 2π
λ jxm sin (θ)

)
is the steering vector.

Sn ∈ C is the random source signal at the snapshot nth.
Wn ∈ CM is an additive Gaussian noise with a covariance matrix ΣW
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Direction-Of-Arrival Normalizing Flow

To improve sample complexity and convergence of our Normalizing Flow, we
design a CNF (conditioned on the Direction of Arrival) specific for the DOA signal
(DOAFlow). This is done by choosing a physics-informed approach that combines
domain knowledge with learning.
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Generic
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Normalizing Flow Direction ν

Generative Direction G

Figure: Architecture of the proposed DOA-Flow model.

Generic Block: Includes standard CNF layers: Activation- Normalization,
Invertible Linear Transformation (the so-called 1 × 1 convolution) and
Coupling Layer.
DOA layer: Incorporates the physical knowledge of the DOA problem into the
DOA-Flow.
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Direction-Of-Arrival Normalizing Flow

DOA Normalizing Flow Step
Let zi and zi+1 be the input and output of the DOA layer, respectively. Then
they are related by

zi+1 = UX (θ)
1
2 zi and, zi = UX (θ)− 1

2 zi+1, (8)

where UX is the learned DOA layer covariance matrix

UX (θ) = A (θ)USAH (θ) + α (SNR)UW (9)

α (SNR) = 10−SNR/10 is the SNR scale
UW and US are the learned noise and signal covariance matrices,
respectively. To ensure that UW and US are P.S.D. we represent them as
LDU decomposition.
A (θ) is the steering matrix (which is known based on the nominal sensor
locations).
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Experimental Results

In the experiments, we investigate three scenarios:
Gaussian signal and noise (reference scenario to validate the GBB).
Sensor locations randomly perturbed.
Constant amplitude signal (QAM4).

QAM4

Sn = 1√
2

(an + j · bn) , (10)

where an and bn are i.i.d. random
variables taking the values ±1 with
equal probability 0.5.

Perturbed Sensor Locations
In this case the sensor locations: are

xm = (m− 1)λ/2 + Um (11)

where Um ∼ N (0, γ2) are i.i.d.
This perturbation modifies the signal
received by the array, but is unknown
to the DOA estimator.
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Experimental Results

Test Point Selection
At the lowest SNR we set the farthest possible test point and sweep the SNR until
BBs < GCRB; then, for higher SNRs, we set the test point at ψ = θ.

ψ =
{
ψ0 otherwise

θ BBs (ψ0) < GCRB
(12)

where ψ0 = arg max−π/2≤ψ≤π/2
∣∣ψ − θ

∣∣
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Experimental Results

In all experiment we use the following parameters: M = 20, number of snapshots
N = 5, SNR range between -30 dB to 10 dB.

Gaussian

Figure: GBB: Gaussian Signal and Noise

non-Gaussian

Figure: QAM4 Signal, Perturbed Sensor
Locations and Reference Scenario
(CRB+GBB)
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Conclusion

Conclusions
We have presented the Generative Barankin bound, the first learning-based
bound on large estimation errors.
We demonstrated its abilities and benefits on a DOA problem with a single
source in three cases.
We introduced DOA-Flow, a conditional normalizing flow for DOA signals.

Open Questions?
How to select test points in the general case?
Theoretical analysis of the convergence of the GBB to the BB ?
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