

TNFormer: Single-Pass Multilingual Text Normalization with a Transformer Decoder Model

Binbin Shen, Jie Wang, Meng Meng, Yujun Wang

Xiaomi Inc., Beijing, China

1. MOTIVATION

Challenges in Text-to-Speech (TTS) Systems

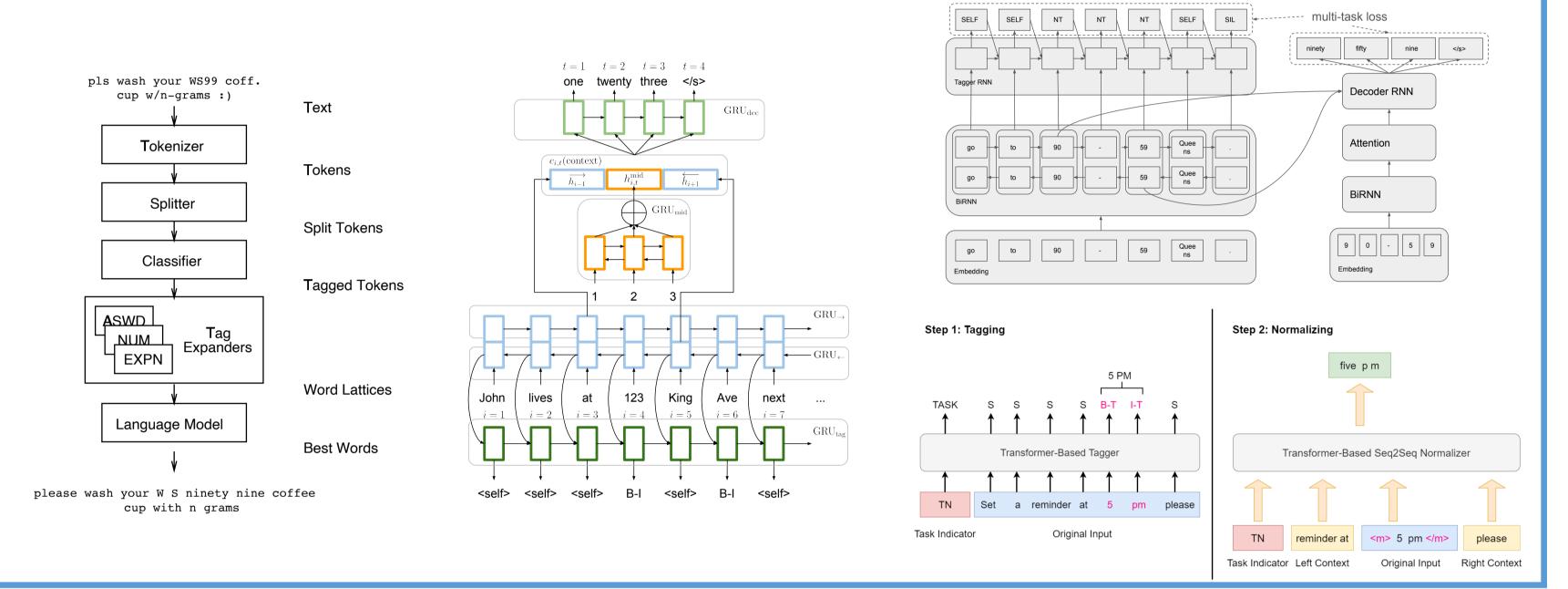
- TTS systems must convert varied text forms into a canonical format for accurate synthesis.
- · Contextual ambiguities in text pose significant challenges in normalization.

Innovations of TNFormer

- Single-Pass TN: Efficiently identifies and normalizes Non-Standard Words (NSWs) in one go.
- Multilingual Support: Effectively handles normalization for both English and Chinese datasets.
- Context-Driven: Capable of understanding the surrounding context to improve accuracy.

2. RELATED WORK

Traditional Methods


 Rule-based systems and WFSTs often struggle with contextdependent inputs and are not easily scalable.

Neural Models

• Enhanced accuracy with neural models, often in two steps: locating non-standard words and contextual normalization.

Advancements

 Hybrid approaches combining rule-based and neural systems have emerged for better context handling.

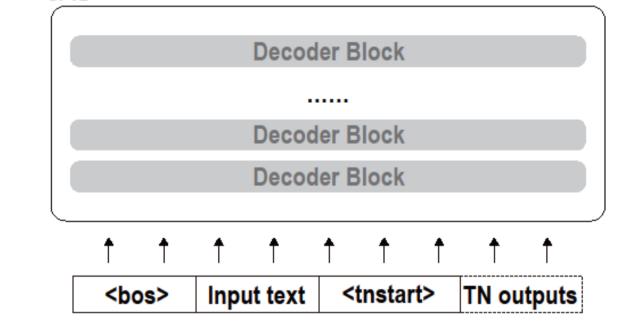
Two Examples:

English example:

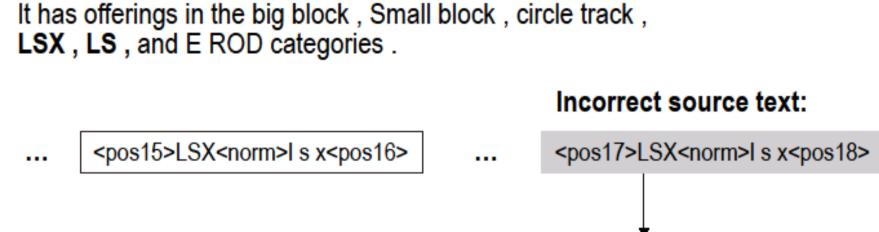
3. PROPOSED APPROACH

TNFormer Model

A decoder-only Transformer architecture designed for single-pass text normalization.


Key Features

- Leverages pre-trained GPT-2 models fine-tuned for English and Chinese languages.
- Employs position markers and a <tnstart> token to facilitate the normalization process.
- Outputs normalized text alongside position information.


Source Text Validation

- Accuracy Verification: Ensures the transcribed source text matches the predicted start and end positions.
- Error Correction: In cases of discrepancies, the source text is re-transcribed to align with the correct positions.
- Handling Omissions: Detects and reintroduces any missing elements in the input text sequence.

TNFormer Model: Input text | <tnstart> | TN outputs

Input text TN outputs Chinese example: 一度以 24:11 领先 13 分 <tnstart> <pos3>24:11<norm> 二十四比十一<pos6><pos7>13<norm> 十三<pos8><eos> Input text TN outputs Source Text Validation:

Validated source text: <pos17>LS<norm> Normalized text (new): Is<pos18>

4. EXPERIMENTS

Datasets

- English: Google Text Normalization dataset (GoogleTN)
- Chinese: FlatTN and an in-house developed Internal Chinese TN Dataset

Methodology

- Position markers assigned to facilitate normalization based on space-delimited words; Chinese text pre-tokenized.
- Models trained on respective datasets using TensorFlow and the Transformers library.

Results

• TNFormer demonstrates superior performance compared to several existing models.

Performance on GoogleTN test set

Sentence Accuracy (%)	
98.41	
97.79	
97.96	
98.58	
98.27	

Performance on FlatTN test set (F1-score)

Category	FlatTN [18]	TNFormer-Zh
PUNC	0.9965	0.9943
MINUTE_CARDINAL	0.9851	0.9907
POINT	0.9689	0.9823
CARDINAL	0.9641	0.9898
DIGIT	0.9527	0.9807
SLASH_PER	0.9412	0.9375
HYPHEN_RATIO	0.9375	0.9565
VERBATIM	0.9057	0.9183
HYPHEN_RANGE	0.8599	0.9226
HYPHEN_IGNORE	0.8428	0.9548

Ablation study

			•	
Configur	ation	GoogleTN	FlatTN	Internal
normal		98.27	93.26	97.33
w/o src te	ext val	97.92	91.79	95.22

5. CONCLUSIONS

Model Efficacy

- Effectively transforms text normalization into a next-token prediction problem, enhancing efficiency.
- Exhibits strong performance across different languages without being explicitly designed for multilingual support.

Future work

- Handling more complex text and multilingual mixtures.
- Integrating with covering grammars to handle unrecoverable errors.

More questions?

For inquiries or further information about TNFormer, please contact {shenbinbin, wangjie50}@xiaomi.com