# **Robust Binaural Sound Localisation With Temporal Attention**



l'he University Sheffield.

- movements





three stages. The first stage extracts suitable features for sound localisation by using four convolutional layers. The extracted frame-level features are then combined using a 'TAttn layer' to obtain utterance-level features. The combined features are passed to the final stage which uses three fully connected layers to perform azimuth estimation as a classification task.

Qi Hu, Ning Ma and Guy J. Brown q.hu@mail.ioa.ac.cn, {n.ma, g.j.brown}@sheffield.ac.uk

### RESULTS

Table 1: Localisation RMSE results (Lower is better) in degree for different models in noisy and reverberant conditions. Average is computed across rooms and SNRs.

|          | Room A |      |      |      | Room B |      |      |      | Room C |      |      |      | Room D |      |      |      | Aug  |
|----------|--------|------|------|------|--------|------|------|------|--------|------|------|------|--------|------|------|------|------|
| SNR (dB) | 20     | 10   | 5    | 0    | 20     | 10   | 5    | 0    | 20     | 10   | 5    | 0    | 20     | 10   | 5    | 0    | Avg. |
| CC-PHAT  | 4.9    | 36.1 | 56.3 | 60.1 | 15.4   | 45.7 | 55.7 | 57.7 | 10.8   | 40.5 | 55.4 | 60.4 | 15.8   | 45.0 | 57.9 | 64.3 | 42.6 |
| + MCT    | 2.0    | 5.9  | 7.0  | 9.2  | 1.6    | 5.4  | 8.7  | 13.3 | 3.2    | 5.9  | 7.1  | 20.3 | 2.6    | 5.1  | 6.3  | 13.3 | 7.3  |
| Shallow  | 3.3    | 6.1  | 8.2  | 13.6 | 2.7    | 4.6  | 7.4  | 16.1 | 2.9    | 4.9  | 7.2  | 19.9 | 3.3    | 5.4  | 8.0  | 19.6 | 8.3  |
| TAttn–E  | 1.6    | 1.8  | 5.5  | 15.3 | 1.0    | 5.2  | 4.8  | 15.2 | 2.2    | 2.2  | 3.2  | 9.0  | 1.8    | 2.1  | 5.1  | 19.0 | 5.9  |
| TAttn–J  | 1.6    | 1.8  | 2.9  | 7.9  | 1.1    | 1.6  | 5.1  | 12.7 | 2.1    | 2.1  | 2.9  | 11.8 | 1.9    | 2.1  | 3.8  | 9.0  | 4.4  |
| TAttn-O  | 1.6    | 1.8  | 2.5  | 13.0 | 1.0    | 1.4  | 3.2  | 10.9 | 2.2    | 2.2  | 2.7  | 6.0  | 1.8    | 2.0  | 2.8  | 13.3 | 4.3  |

Table 2: Localisation Accuracy (%, Higher is better) for different models in noisy and reverberant conditions. Average is computed across rooms and SNRs.

|          |      | Roo  | m A  |      | Room B |      |      |      | Room C |      |      |      | Room D |      |             |      | Δυσ  |
|----------|------|------|------|------|--------|------|------|------|--------|------|------|------|--------|------|-------------|------|------|
| SNR (dB) | 20   | 10   | 5    | 0    | 20     | 10   | 5    | 0    | 20     | 10   | 5    | 0    | 20     | 10   | 5           | 0    | Avg. |
| CC-PHAT  | 99.4 | 74.3 | 41.1 | 20.6 | 96.3   | 59.4 | 32.7 | 19.0 | 97.2   | 62.9 | 34.2 | 17.9 | 96.0   | 64.5 | 35.6        | 19.9 | 54.4 |
| + MCT    | 99.8 | 97.8 | 93.6 | 85.3 | 99.5   | 95.7 | 92.8 | 83.3 | 99.8   | 97.8 | 92.2 | 80.9 | 99.6   | 94.9 | 91.5        | 81.6 | 92.9 |
| Shallow  | 99.7 | 96.9 | 90.8 | 80.4 | 99.8   | 96.0 | 90.3 | 78.6 | 99.9   | 98.3 | 94.2 | 75.3 | 99.8   | 97.6 | 90.7        | 72.1 | 91.3 |
| TAttn-E  | 100  | 99.8 | 97.9 | 86.4 | 100    | 99.8 | 96.5 | 82.4 | 100    | 99.5 | 97.8 | 83.2 | 100    | 99.5 | 97.7        | 78.0 | 94.9 |
| TAttn–J  | 100  | 100  | 98.6 | 89.3 | 100    | 99.9 | 97.7 | 88.7 | 100    | 99.7 | 97.9 | 90.7 | 100    | 99.6 | <b>98.4</b> | 90.4 | 96.9 |
| TAttn-O  | 100  | 99.9 | 98.9 | 91.3 | 100    | 99.9 | 98.0 | 88.7 | 100    | 99.8 | 98.5 | 90.6 | 100    | 99.6 | 98.7        | 87.0 | 96.9 |

• GCC-PHAT: The GCC-PHAT baseline without multi-condition training (MCT) • Shallow: The integration of frame-level output probabilities of the localisation system as a weighted sum according to a normalised oracle temporal mask • TAttn–E: Making use of temporal masks estimated by the pre-finetuned TME on the training set • TAttn–J: A joint optimisation network where the TME and the azimuth estimation network are jointly trained using the multi-task learning loss function • TAttn–O: Using normalised *oracle* temporal masks in the attention layer to combine deep features

## CONCLUSION

• A novel binaural machine hearing system with temporal attention is proposed for robust sound localisation.

• The temporal attention layer integrates frame-level deep features within the localisation DNN by incorporating outputs of an TME module.

• Multi-task learning is adopted to jointly optimise the localisation and the TME module, which improves the system performance, especially in challenging scenarios.

### FUTURE RESEARCH

• Extending the system to employ spectrotemporal attention, which would be useful particularly for narrow-band intrusions • Exploring a more integrated approach to mask estimation and sound localisation

### REFERENCES



[1] Mack et al. Signal-aware broadband DOA estimation using attention mechanisms. In *ICASSP*, pages 4930-4934, 2020.

[2] Vecchiotti et al. End-to-end binaural sound localisation from the raw waveform. In *ICASSP*, pages 451-455, 2019.