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INTRODUCTION
Narrow-band antenna signal processing derived methods, being sensitive to noise and reverberations:

• GCC-PHAT (Generalized Cross Correlation with Phase Transform)
• SRP (Steered Response Power)
• Subspace-based Methods

Deep Neural Network (DNN) based methods, where the front- and back-end processes are decoupled:
• Spatial Feature Enhancement
• Spatial Feature Selection using Target Related T-F Masks
• Robust Improvements on Back-end Localisation Models via Multi-conditional Training or Head-

movements

METHODS
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Figure 1: The framework of the proposed phase-based system using temporal attention for binaural sound locali-
sation. ‘L’ and ‘R’ represent speech spectrum of left and right ears respectively. The phase-based localisation uses
a convolutional neural network (CNN) framework for binaural sound localisation in noisy and reverberant con-
ditions by incorporating outputs of a temporal mask estimation (TME) module, which indicate speech dominance
within each frame. The TME is trained using oracle masks as targets and noisy speech as input features.
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Figure 2: The architecture of CNN using phase spectrum for binaural sound azimuth localisation. ‘L’ and ‘R’ denote
the left and right channels respectively. The system for binaural sound source localisation is a CNN system with
three stages. The first stage extracts suitable features for sound localisation by using four convolutional layers. The
extracted frame-level features are then combined using a ‘TAttn layer’ to obtain utterance-level features. The com-
bined features are passed to the final stage which uses three fully connected layers to perform azimuth estimation
as a classification task.

RESULTS

Table 1: Localisation RMSE results (Lower is better) in degree for different models in noisy and reverberant condi-
tions. Average is computed across rooms and SNRs.

Room A Room B Room C Room D Avg.SNR (dB) 20 10 5 0 20 10 5 0 20 10 5 0 20 10 5 0
GCC-PHAT 4.9 36.1 56.3 60.1 15.4 45.7 55.7 57.7 10.8 40.5 55.4 60.4 15.8 45.0 57.9 64.3 42.6

+ MCT 2.0 5.9 7.0 9.2 1.6 5.4 8.7 13.3 3.2 5.9 7.1 20.3 2.6 5.1 6.3 13.3 7.3
Shallow 3.3 6.1 8.2 13.6 2.7 4.6 7.4 16.1 2.9 4.9 7.2 19.9 3.3 5.4 8.0 19.6 8.3
TAttn–E 1.6 1.8 5.5 15.3 1.0 5.2 4.8 15.2 2.2 2.2 3.2 9.0 1.8 2.1 5.1 19.0 5.9
TAttn–J 1.6 1.8 2.9 7.9 1.1 1.6 5.1 12.7 2.1 2.1 2.9 11.8 1.9 2.1 3.8 9.0 4.4

TAttn–O 1.6 1.8 2.5 13.0 1.0 1.4 3.2 10.9 2.2 2.2 2.7 6.0 1.8 2.0 2.8 13.3 4.3

Table 2: Localisation Accuracy (%, Higher is better) for different models in noisy and reverberant conditions. Av-
erage is computed across rooms and SNRs.

Room A Room B Room C Room D Avg.SNR (dB) 20 10 5 0 20 10 5 0 20 10 5 0 20 10 5 0
GCC-PHAT 99.4 74.3 41.1 20.6 96.3 59.4 32.7 19.0 97.2 62.9 34.2 17.9 96.0 64.5 35.6 19.9 54.4

+ MCT 99.8 97.8 93.6 85.3 99.5 95.7 92.8 83.3 99.8 97.8 92.2 80.9 99.6 94.9 91.5 81.6 92.9
Shallow 99.7 96.9 90.8 80.4 99.8 96.0 90.3 78.6 99.9 98.3 94.2 75.3 99.8 97.6 90.7 72.1 91.3
TAttn–E 100 99.8 97.9 86.4 100 99.8 96.5 82.4 100 99.5 97.8 83.2 100 99.5 97.7 78.0 94.9
TAttn–J 100 100 98.6 89.3 100 99.9 97.7 88.7 100 99.7 97.9 90.7 100 99.6 98.4 90.4 96.9

TAttn–O 100 99.9 98.9 91.3 100 99.9 98.0 88.7 100 99.8 98.5 90.6 100 99.6 98.7 87.0 96.9

• GCC-PHAT: The GCC-PHAT baseline without multi-condition training (MCT)
• Shallow:The integration of frame-level output probabilities of the localisation system as a

weighted sum according to a normalised oracle temporal mask
• TAttn–E: Making use of temporal masks estimated by the pre-finetuned TME on the training set
• TAttn–J: A joint optimisation network where the TME and the azimuth estimation network are

jointly trained using the multi-task learning loss function
• TAttn–O: Using normalised oracle temporal masks in the attention layer to combine deep features
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FUTURE RESEARCH

• Extending the system to employ spectro-
temporal attention, which would be useful
particularly for narrow-band intrusions

• Exploring a more integrated approach to
mask estimation and sound localisation

CONCLUSION
• A novel binaural machine hearing system with temporal attention is proposed for robust sound

localisation.
• The temporal attention layer integrates frame-level deep features within the localisation DNN by

incorporating outputs of an TME module.
• Multi-task learning is adopted to jointly optimise the localisation and the TME module, which

improves the system performance, especially in challenging scenarios.


