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ABSTRACT
Deep unfolding models are designed by unrolling an opti-
mization algorithm into a deep learning network. These mod-
els have shown faster convergence and higher performance
compared to the original optimization algorithms. Addition-
ally, by incorporating domain knowledge from the optimiza-
tion algorithm, they need much less training data to learn
efficient representations. Current deep unfolding networks
for sequential sparse recovery consist of recurrent neural net-
works (RNNs), which leverage the similarity between con-
secutive signals. We redesign the optimization problem to use
correlations across the whole sequence, which unfolds into a
Transformer architecture. Our model is used for the task of
video frame reconstruction from low-dimensional measure-
ments and is shown to outperform state-of-the-art deep un-
folding RNN and Transformer models, as well as a traditional
Vision Transformer on several video datasets.

Index Terms— deep unfolding, Transformer networks,
sparse recovery, compressed sensing.

1. INTRODUCTION

The recovery of signals from low-dimensional noisy measure-
ments is used in various imaging applications, e.g., dynamic
magnetic resonance imaging [1], compressive video sensing
[2] and high-speed hyperspectral video acquisition [3]. When
recovering a signal from low-dimensional or corrupted data,
prior knowledge of signal properties can be leveraged to make
reconstruction possible. In the case of sequential signals, one
can use both (i) the low complexity representations of indi-
vidual signals, for instance, sparsity with respect to some dic-
tionary, and (ii) the correlation between signals.

Several algorithms exist for sequential sparse recovery,
e.g., [4, 5, 6, 7]. These methods use iterative optimization al-
gorithms, resulting in computationally expensive reconstruc-
tion, especially when the problem dimensionality increases.
On the other hand, deep neural networks (DNNs) move com-
putational time to the training phase, yielding fast inference.
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They have achieved state-of-the-art performance on various
inverse imaging problems [8], but in general, they do not
make explicit use of prior domain knowledge. Hence these
black-box models often lack interpretability and theoretical
guarantees [8]. Furthermore, their lack of prior knowledge
requires them to train on huge amounts of data to learn its
specific properties or obtain efficient representations.

Deep unfolding models try to combine the fast inference
and learning from data of DNNs with the domain knowl-
edge embedded in optimization algorithms. By unrolling
an optimization algorithm into a neural network that can be
trained, one obtains a deep learning model with prior domain
knowledge encapsulated in the structure and constraints of the
model [9]. Examples include Learned ISTA (LISTA) [10],
ADMM-Net [11], and DUBLIB [12]. For sequential sparse
recovery, current state-of-the-art deep unfolding models con-
sist of RNN architectures, such as SISTA-RNN [13] and
reweighted-RNN [14], which take advantage of the similarity
in ℓ2 or ℓ1 norm of consecutive signals.

Attention layers exploit similarities between signals that
are farther apart and are used in the Transformer network [15],
which processes a full sequence at once and outperforms
state-of-the-art RNNs in language modeling. Recently, the
work reported in [16] presented an energy function and cor-
responding optimization algorithm that unfolds into a (sim-
plified) Transformer architecture. The authors used two text
sentiment classification datasets to validate that their conver-
gence conditions hold on real-world data, but they did not
evaluate their model on any practical application.

Starting from [16], we create a new energy function tai-
lored to the problem of sparse recovery of video frames by in-
corporating priors on (i) video frame sparsity in a dictionary
and (ii) correlation between the frames of a video. Building
upon the framework in [16], we derive a new optimization
algorithm to minimize our energy function and unfold it to
obtain a Transformer network. As a result, our deep unfold-
ing Transformer model has a modified self-attention mecha-
nism, different linear projections, and a different activation
function compared to the model in [16]. Using video re-
construction experiments on different real-world datasets, we
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show that our architecture outperforms state-of-the-art deep
unfolding RNNs [13, 17, 14], as well as a traditional Vision
Transformer [18] and the deep unfolding Transformer in [16].

The rest of the paper is organized as follows. Section 2 re-
views the background and prior work. Section 3 describes the
design of the deep unfolding Transformer for sparse recovery
of sequential signals. Experiments and results are given in
Section 4, and conclusions are drawn in Section 5.

2. BACKGROUND AND RELATED WORK

2.1. Deep unfolding RNNs for sequential sparse recovery

Let us reconstruct a sequence of signals st ∈ Rn, with t =
1, . . . , T , from low-dimensional noisy measurements xt =
Ast + ϵt, where A ∈ Rm×n (m ≪ n) is the measurement
matrix. We assume that the signal st has a sparse represen-
tation ht in an overcomplete dictionary D ∈ Rn×d, a.k.a.,
st = Dht. Such a series of signals can also be correlated in
time, in which case we can improve reconstruction by adding
a constraint to reflect this. The signal sequence can then be
recovered by solving the following optimization problem:

min
ht

1

2
∥xt−ADht∥22+λ1∥ht∥1+λ2C (ht,ht−1) , ∀t (1)

where ∥ · ∥p is the ℓp norm, λ1 and λ2 are regularization pa-
rameters and C(·) models the correlation in time. We can
find the reconstructed signals from the obtained vectors h⋆

t

by s⋆t = Dh⋆
t . Depending on the choice of C(·), (1) results in

different iterative optimization algorithms, which have been
unrolled into deep unfolding RNN models. Specifically, when
C(·) is ∥Dht − FDht−1∥22, (1) can be solved with the se-
quential iterative soft thresholding algorithm (SISTA) or its
unfolded version SISTA-RNN [13]. Alternatively, when C(·)
is ∥ht − Ght−1∥1, we obtain an ℓ1-ℓ1 optimization prob-
lem [7], which unfolds into the ℓ1-ℓ1-RNN [17]. Here F and
G are affine transforms promoting temporal correlation. By
adding additional weighting factors to the ℓ1-ℓ1 problem, an
improved reweighted-RNN model is obtained [14].

2.2. Transformers and deep unfolding

Transformer models have in recent years achieved state-of-
the-art results in language modeling [15] and computer vision
tasks [19]. Their key idea is splitting the input data into inde-
pendent tokens and processing them in parallel to model long-
range relationships. This is in contrast to RNNs, which pro-
cess data sequentially. In Transformers, the input tokens can
be word embeddings for language modeling or image patches
for image or video processing. One block of a Transformer
consists of a self-attention module, which lets tokens extract
context from each other, followed by a one- or two-layer fully
connected network (FCN) with an activation function (e.g.,
ReLU), which processes each token in parallel. Whereas a

block is also interleaved with normalization layers, the core
operation of the k-th block can be described by:

Z(k+1) = Y(k) softmax
(
Y(k)TW

(k)T
K W

(k)
Q Y(k)

)
,

y(k+1)
n = FCN

(
z(k+1)
n

)
for n = 1, . . . , N,

(2)

where the tokens y(k)
1 , . . . ,y

(k)
N are concatenated into the ma-

trix Y(k), transformed into Z(k) by the self-attention mod-
ule with learnable matrices W

(k)
K and W

(k)
Q , and then the

columns z
(k)
n are further processed into the output tokens of

the block y
(k+1)
1 , . . . ,y

(k+1)
N . The softmax function trans-

forms the values u1, . . . , uN of each row in a matrix to a
probability distribution of N possible outcomes with prob-
ability exp(un)∑N

j=1 exp(uj)
. Many of these blocks are then stacked

on top of each other to form a full Transformer model.
The authors of [16] designed the first deep unfolding

based Transformer by starting from the following optimiza-
tion problem:

min
Y

∑
i,j

− exp

(
−1

2
∥Wayi −Wayj∥22

)
+

1

2
∥WaY∥2F


+

(
1

2
Tr
(
YTWbY

)
+

1

2
∥Y∥2F + φ(Y)

)
, (3)

where Y is a matrix with the vectors y1, . . . ,yN as columns,
∥ · ∥F is the Frobenius norm, Tr(·) is the trace of a matrix,
φ(u) is the indicator function, whose value is +∞ for u < 0
and 0 otherwise, and Wa and Wb are arbitrary weight ma-
trices. They proved that this total energy can be minimized
by iterations of an algorithm alternating between a step that
decreases the value of the first part of (3) and a proximal gra-
dient descent step on the second part of (3). When unfolded,
this first part will result in a weighted softmax self-attention
layer, while the second part unfolds into a linear projection
with ReLU activation as follows:

Z(k+1) = Y(k) softmaxβ

(
Y(k)TW(k)T

a W(k)
a Y(k)

)
, (4)

y(k+1)
n = ReLU

(
W

(k)
b z(k+1)

n

)
for n = 1, . . . , N, (5)

where W
(k)
a and W

(k)
b are learnable matrices, ReLU(u) =

max(0, u) and softmaxβ is a weighted softmax function with
probabilities βn exp(un)∑N

j=1 βj exp(uj)
, where βi = exp

(
− 1

2∥yi∥22
)
.

3. DEEP UNFOLDING TRANSFORMER FOR
SPARSE RECOVERY OF SEQUENTIAL SIGNALS

Following the notation in Section 2.1, we consider the prob-
lem of reconstructing a sequence of video frames st, t =
1, . . . , T from low-dimensional noisy measurements xt =
Ast + ϵt (where A is the sensing matrix) and assume that
each frame st has a sparse representation ht in the overcom-
plete dictionary D ∈ Rn×d.



3.1. Optimization problem

In the deep unfolding RNNs discussed in Section 2.1, only
the correlation between pairs of consecutive signals is con-
sidered. When modeling a video with a static background,
for example, measurements from all frames are useful to re-
cover the background and could improve reconstruction qual-
ity compared to looking at only two frames at a time. The
same can be argued for videos with recurring events or tem-
porary occlusions, where similar signals in the video are not
necessarily adjacent.

In order to find similar signals in the sequence and re-
construct them simultaneously, we aim to extend the term
∥Dht − FDht−1∥22 in SISTA [13] to model correlations
over the whole sequence, in some form of

∑
τ ̸=t ∥FDht −

FDhτ∥22. Initial experiments showed that using F does
not improve performance and therefore we set it to the
identity matrix. In order to diminish the influence of un-
correlated signals, we introduce an exponential function:∑

τ ̸=t− exp
(
−∥Dht −Dhτ∥22

)
. When performing gradi-

ent descent on this expression, the gradient will be near zero
for dissimilar signals while we improve the estimation of
correlated signals.

Furthermore, we add the term ∥xt −ADht∥22 to encode
the error between the measurements and their reconstruction
from ht, and a sparsity prior for each of the representations
ht. Finally, we also add a constraint on the ℓ2 norm of each
signal, i.e.,

∑
t ∥Dht∥22 = ∥DH∥2F , where H is a matrix

with h1, . . . ,hT in its columns, to obtain the following opti-
mization problem:

min
H

λ2

(∑
t,τ

− exp

(
−1

2
∥Dht −Dhτ∥22

)
+

1

2
∥DH∥2F

)

+

(∑
t

1

2
∥xt −ADht∥22 + λ1

∑
t

∥ht∥1

)
, (6)

where λ1 and λ2 are regularization parameters. We observe
a similarity between our optimization problem and (3), espe-
cially for the first part, which is nearly identical. The dif-
ference lies in the second half, where the data fidelity term∑

t
1
2∥xt − ADht∥22 replaces 1

2 Tr(Y
TWBY) and the ℓ2

norm prior and indicator function φ(·) are replaced by our ℓ1
norm prior. These differences make our optimization problem
tailored to the task of sparse recovery of sequential signals.

We use the theoretical framework of [16] to derive an opti-
mization algorithm for solving (6), analogous to the algorithm
they derived for (3). The first part in (6) is minimized by steps
of softmax self-attention, analogous to (3). The second part
in (6) can be minimized for each ht separately, resulting in T
parallel LASSO problems:

min
ht

1

2
∥xt −ADht∥22 + λ1∥ht∥1, (7)

Algorithm 1 Attention-based sequential iterative soft thresh-
olding algorithm
Require: measurement matrix A, dictionary D, measure-

ments xt = Ast, with (t = 1, . . . , T )

1: h
(0)
1 , . . . ,h

(0)
T ← 0

2: for k = 1 to K do
3: for t = 1 to T do

4: y
(k)
t ← λ2

∑
u βu exp

(
h

(k−1)T
t DTDh(k−1)

u

)
h(k−1)

u∑
u βu exp

(
h

(k−1)T
t DTDh

(k−1)
u

)
5: z

(k)
t ←

(
I− 1

cD
TATAD

)
y
(k)
t + 1

cD
TATxt

6: h
(k)
t ← ϕλ1/c

(
z
(k)
t

)
7: end for
8: end for
9: return s⋆1 = Dh

(K)
1 , . . . , s⋆T = Dh

(K)
T

which can be solved with ISTA [20]:

h
(k+1)
t = ϕλ1

c

((
I− 1

c
DTATAD

)
h
(k)
t +

1

c
DTATxt

)
,

(8)
with ϕγ(u) = sign(u)max(0, |u| − γ) the soft thresholding
function and c an upper bound on the Lipschitz constant of the
gradient of 1

2∥xt −ADht∥22. The optimization algorithm for
(6) then consists of alternating steps of softmax self-attention
and parallel proximal gradient descents on (7), namely, one
iteration of ISTA. The inclusion of the ISTA step (8) instead
of a traditional ReLU activated linear projection (see (5)) is
the main difference between our method and the one in [16].

The procedure of signal recovery is given in Algorithm 1.
Since initially all ht, t = 1, . . . , T, are identical (we initialize
them to zero), the first iteration of the algorithm simplifies to
an iteration of ISTA. After K − 1 more iterations of alternat-
ing self-attention and single-iteration ISTA steps, the sparse
representations h(K)

t are multiplied with the dictionary D to
obtain the final reconstructed signals s⋆t = Dh

(K)
t .

3.2. Proposed DUST model

By unrolling the steps of Algorithm 1 we obtain the pro-
posed Deep Unfolding Sparse Transformer model (DUST).
The model (see Fig. 1) takes as input a set of initial tokens ht

and the measurements xt, it applies self-attention (line 4 in
the algorithm), followed by one layer of LISTA [10] (which
we refer to as 1ℓ-LISTA) applied to each token separately (see
lines 5 and 6). The main processing block of DUST then has
the following form:

Z(k+1) = λ2H
(k) softmax

(
H(k)TDTDH(k)

)
, (9)

h
(k+1)
t = ϕλ1/c

(
Uz

(k+1)
t +Vxt

)
for t = 1, . . . , T. (10)

where U = I − 1
cD

TATAD and V = 1
cD

TAT . The to-
kens are put through such a block of self-attention (9) and
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Fig. 1. Proposed deep unfolding Transformer (DUST) archi-
tecture for sequential sparse recovery.

Table 1. Average video reconstruction quality (PSNR) on
three real-world datasets.

Avenue UCSD ST
SISTA-RNN 35.73 34.13 34.90
ℓ1-ℓ1-RNN 36.51 34.34 35.56

Reweighted-RNN 36.94 35.22 36.03
ViT [18] 36.04 34.79 35.91

Unfolded Transformer [16] 34.36 32.94 34.25
DUST (proposed) 37.61 35.98 35.94

1ℓ-LISTA (10) K times, followed by a final projection on D
to obtain the reconstructed signals.

The learnable parameters of DUST are the weights U and
V, the parameters λ1, λ2 and c, which are shared across
all blocks, and the dictionary D (initialized with the DCT),
which is also the same matrix for each block and the output
projection. The model is trained by minimizing the empirical
loss 1

JT

∑J
j=1

∑T
t=1 ∥sj,t − s⋆j,t∥22 between the original and

reconstructed time-series signals, where J is the number of
training data. The sensing matrix A (randomly initialized) is
also learned during training.

We note that the difference between the Transformer in
[16] and DUST is that our model promotes sparsity in the pro-
cessed signals through the ISTA steps and takes the original
measurements xt as input in each block (see (5) vs. (10)).

4. EXPERIMENTS AND RESULTS

To assess the performance of DUST, we use the same setup
as in [14] to reconstruct video frames from low-dimensional
measurements. Three datasets are considered, namely CUHK
Avenue, UCSD Anomaly Detection and ShanghaiTech Cam-
pus. Videos are downscaled and converted to grayscale, then
non-overlapping clips of 20 frames are extracted from the
videos and further split into clips of patches of 16× 16 pixels
with 50% overlap. We use the original testing split from each
dataset, while the training sets are split into approximately
80% for training and 20% for validation. To keep the amount
of data manageable, videos are cut off after 200 frames.

Table 2. Average video reconstruction quality (PSNR) on the
Avenue dataset for different compression rates.

50% 40% 30% 10%
SISTA-RNN 41.89 39.92 37.99 32.01
ℓ1-ℓ1-RNN 42.86 40.90 38.89 32.98

Reweighted-RNN 43.23 41.16 39.12 33.88
ViT [18] 39.53 38.28 37.12 33.85

Unfold. Transf. [16] 39.66 37.93 36.07 32.11
DUST (proposed) 43.32 41.47 39.67 34.71

Our DUST model is compared to SISTA-RNN [13], ℓ1-
ℓ1-RNN [17] and reweighted-RNN [14], as well as a vanilla
Vision Transformer (ViT) model [18] and our implementation
of [16]. Each model has K = 3 layers, a learnable m × 256
sensing matrix A, and where applicable a 256 × 1024 dic-
tionary D, initialized with the discrete cosine transform. The
size m < 256 of A corresponds to the chosen compression
rate. Other parameters are initialized according to the respec-
tive papers. For DUST we initialize c = 1 , λ1 = 0.1 and
λ2 = 0.4. All models are trained for 100 epochs on Avenue
and UCSD, but 40 epochs on ShanghaiTech Campus given
its large size. Regarding the size of the models, DUST has
1.38M parameters, SISTA-RNN 341K, ℓ1-ℓ1-RNN 1.32M,
reweighted-RNN 2.37M, the ViT 2.46M and the Transformer
in [16] 485K.

We report the average video reconstruction quality for
a compression rate of 20% on Avenue, UCSD, and Shang-
haiTech in Table 1. DUST yields a 0.7 dB improvement
over the best model on Avenue and UCSD, while being only
slightly behind on ShanghaiTech. The Vision Transformer
performs well ShanghaiTech, but less so on Avenue and
UCSD; probably due to the smaller size of the datasets, for
which it is difficult to train a traditional Transformer. The
deep unfolding Transformer in [16] is significantly worse
than the ViT since it is a simpler architecture with less model-
ing capacity, and does not incorporate the priors embedded in
the RNN models and the proposed DUST. We also evaluated
our model for different compression ratios on the Avenue
dataset, from 50% to 10%, as shown in Table 2, where DUST
improves over reweighted-RNN in all settings.

5. CONCLUSION

In this paper, we design an optimization problem for sparse
recovery of sequential signals, including correlations between
all signals instead of pairs of consecutive time steps. The re-
sulting optimization algorithm can be unfolded into a Trans-
former architecture that outperforms several state-of-the-art
deep unfolding RNN and Transformer models, as well as a
traditional Vision Transformer on the task of video recon-
struction from compressed measurements.
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