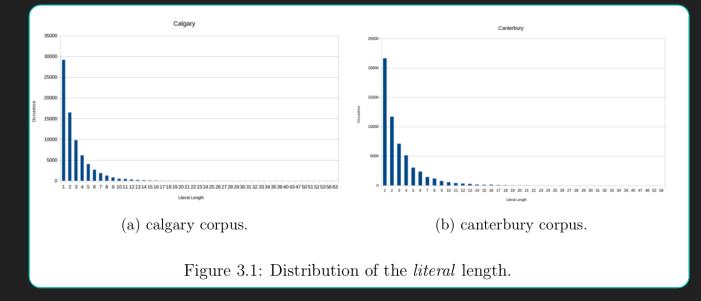
SnappyR: A New High-Speed Lossless Data Compression Algorithm

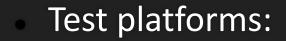
Rui Chen (ruichen@mathworks.com)


Lihao Xu (lihao@wayne.edu)

- Snappy algorithm:
- developed by Google in 2011
- open-sourced in C++
- widely used, e.g. BigTable, MapReduce, Hadoop, etc.

SnappyR Inspiration

- Based on Snappy
- Inspired by two observation during match searching:
- lots of 0-length literals
- offset lengths tend to be short

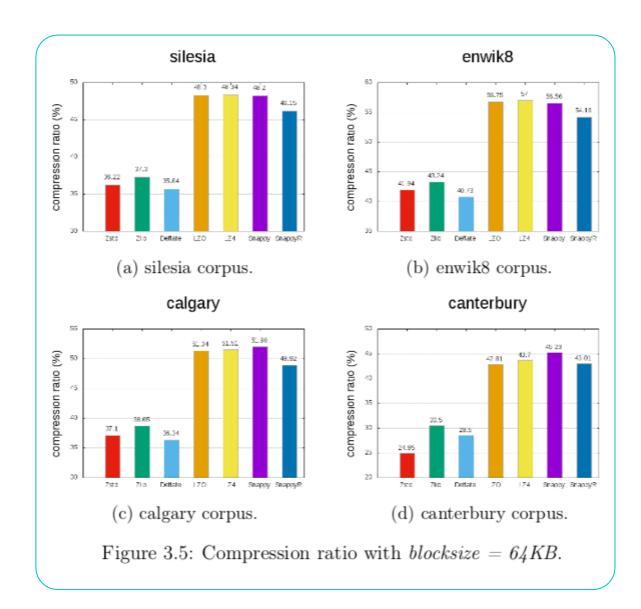


SnappyR

- Compression/decompression process is the same as Snappy
- New token structure

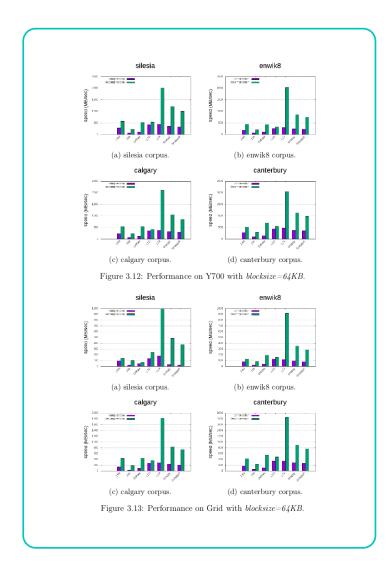
Token bits	Type	Description				
LLLL_LL 00 AAAA_AAAA AAAA_AAAA AAAA_AAAA AAAA_AAAA	Literal	The six <i>L</i> -bits indicate the length of the <i>literal</i> . A length of 60, 61, 62 or 63 indicates there are additional 1, 2, 3 or 4 byte(s) following to present the length instead of the six <i>L</i> -bits Note the <i>A</i> -bits may or may not exist in a <i>literal</i> token.				
FFFM_MM 01 FFFF_FFFF	Match	The three M -bits indicate the length of the <i>match</i> . The eleven F -bits indicate the length of the <i>offset</i> .				
MMMM_MM10 FFFF_FFFF FFFF_FFFF	Match	Same as above.				
<i>MMMM_MM</i> 11 <i>FFFF_FFF</i> <i>FFFF_FFF</i> <i>FFFF_FFF</i> <i>FFFF_FFF</i>	Match	Same as above.				

SnappyR Evaluation


Platform	CPU Model	L1 Cache	L2 Cache	L3 Cache	Memory	OS
Y700	Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz	$8 \times 64 \text{KB}$	$8 \times 256 \text{KB}$	6MB	16 GB	Ubuntu 16.04
Grid	Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz	$2 \times 64 \text{KB}$	$2 \times 256 \text{KB}$	4MB	8GB	CentOS 7

Comparison algorithms:

- Zlib 1.2.11, Deflate 1.3, LZO1x 2.10, Snappy 1.1.4, LZ4 1.9.2
- Corpus sets:
 - Silesia, Calgary, Canterbury, enwik8


SnappyR Evaluation – Compression Ratio

 Compression ratio: 5%-10% better (LZO, Snappy, LZ4)

SnappyR Evaluation – Speed

- Compression speed: similar (LZO, LZ4), 5%-10% faster (Snappy)
- Decompression speed: similar (Snappy)

SnappyR Evaluation

O SnappyR can become another viable replacement or alternative to Snappy, LZ4 or LZO for computing and storage systems and applications, where high-speed lossless data compression is needed.

Thank you!

Rui Chen (ruichen@mathworks.com)

Lihao Xu (lihao@wayne.edu)