LMS: PAST, PRESENT AND FUTURE:

Puzzles, Problems and Potentials

Victor Solo

School of Electrical Engineering University of New South Wales Sydney, AUSTRALIA

ICASSP 2019, Brighton, UK

Adaptive Signal Processing B Widrow USA

Adaptive Control PC Young UK

Netric 1: Young Recursive Estimation and Time-Series Analysis An ideoduction for the Nadert add Plactfore Second Editor

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Outline

- Educated in { Control Origins in { SignalProcessing
- 2 LMS does not Converge!; But it does Perform!
- Network I MS.
- 4 Education Notes
- S The Future is? Statistical Signal Processing not Machine Learning!
- Onclusions.

HJ.Kushner 1984

普普 <u>8 8 4</u>

A.Benveniste et.al. 1990

S.Havkin

O.Maachi 1995 dsp HISTORY

< □ > < □ > < □ > < □ > < □ > < □ >

Bernard Widrow

Fig. 5. Block diagram of the parameter adjustment mecha inference adaptive meters (MPAS)

Whitaker MITRule,1959 Thinking About Thinking:

The Discovery of the LMS Algorithm

IEEE SIGNAL PROCESSING MAGAZINE [100] JANUARY 2005

V. Solo (UNSW)

ICASSP 2019 2/10

LMS does not Converge!?

Heuristics + Steepest Descent

Problem: Minimize instantaneous squared error $\frac{1}{2}e_t^2(w)$ where the error signal is $e_t(w) = y_t - x_t^T w$.

Steepest Descent gives classic form $\frac{w_{new}}{\hat{w}_t} = \frac{w_{old}}{\hat{w}_{t-1}} + \frac{gain}{\mu} * \frac{gradient}{x_t} * \frac{error}{e_t}$ $e_t = y_t - x_t^T \hat{w}_{t-1}$

But μ -scaling is ignored. To choose μ it has to be scaled: $\mu = \frac{\mu_o}{\sigma_x^2}$ where μ_o is scale free.

Error Analysis

Weight error $= \tilde{w}_t = \hat{w}_t - w_t$. Then $\delta \tilde{w}_t = -\mu x_t x_t^T \tilde{w}_{t-1} + \mu x_t n_t + \delta w_t$ where $\delta w_t = w_t - w_{t-1}$.

- This is a time-variant stochastic difference equation and so its state does not converge.
- But under certain regularity conditions it does settle into a steady state.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LMS Hovers

Averaging Analysis

Need realization-wise analysis.

• Sum the error system

$$\tilde{w}_{\mathcal{T}+\mathcal{N}} - \tilde{w}_{\mathcal{T}} = -\mu \Sigma_{\mathcal{T}}^{\mathcal{T}+\mathcal{N}} x_t x_t^{\mathcal{T}} \tilde{w}_{t-1} + \mu \Sigma_{\mathcal{T}}^{\mathcal{T}+\mathcal{N}} x_t n_t$$

• Change is slow so:

$$\stackrel{\Rightarrow}{\to} \stackrel{\tilde{w}_{T+N}}{_{\tau}} - \stackrel{\tilde{w}_{T}}{_{\tau}} \approx \\ -\mu \Sigma_{T}^{T+N} x_{t} x_{t}^{T} \stackrel{\tilde{w}_{T-1}}{_{\tau}} + \mu \Sigma_{T}^{T+N} x_{t} n_{t}$$

- Now approximate with averages $\Rightarrow \tilde{w}_{T+N} - \tilde{w}_N \approx -\mu N R_x \tilde{w}_{T-1} + 0$
- Now difference

 $\Rightarrow \delta m_t = -\mu R_x m_{t-1} + (\delta w_t)$ This is the averaged system and is stable if $0 < \mu \lambda_{max}(R_x) < 2^{-a}$

^aODE, Weak convergence can't give this

Averages

Assume, as $N \to \infty$:

- Stationary Regressors $\frac{1}{N} \Sigma_T^{T+N} x_t x_t^T \to R_x$
- Stationary Noise \perp Regressors $\frac{1}{N} \Sigma_T^{T+N} x_t n_t \rightarrow 0.$

Hovering Theorem

What does the original system do?

- It hovers/jitters/fluctuates in the vicinity of the equilibrium points of the averaged system.
- To complete the stability analysis one needs a Hovering Theorem which links the two trajectories.

(日) (同) (日) (日)

LMS Performs

Widrow et.al. 1976

Introduced fundamental measures of performance.

 $P(\mu) = E(\tilde{w}_t \tilde{w}_t^T).$ $\mathcal{E}(\mu) = E(e_t^2) = E(y_t - x_t^T \hat{w}_{t-1})^2$ They look simple but are very challenging to calculate.

Weight Error Variance

Under S \perp F : stationarity+ $_{regressors}^{noise}$ +fixed w it can be shown that $P(\mu) = P_o + o(\mu)$ where

$R_{x}P_{o} + P_{o}R_{x} = F_{xn}(0) = \sum_{-\infty}^{\infty} \gamma_{k}^{x} \gamma_{k}^{n}$

MSE

Under S \perp F it can be shown $\mathcal{E}(\mu) = \mu tr(F_{xn}(0)) + o(\mu).$

White Noise Fallacy

With either white regressors or white noise (or both) the formulae reduce to the <u>all</u> white noise formulae with $F_{xn}(0) = \gamma_0^x \gamma_0^n$. This explains mistaken claims that the <u>all</u> white noise formulae are always correct.

イロト 不得 トイヨト イヨト 二日

Network LMS Stability

Node-wise Measurements

Each node records measurements related to a common weight vector.

 $y_{k,t} = x_{k,t}^T w_e + n_{k,t}$
for $k = 1, \cdots, N$.

LMS has various NW extensions; but all use local information.

Network LMS does not Converge $\hat{w}_{t} = \mathcal{A}_{2}^{T}(\mathcal{A}_{o}^{T} - \mu \mathcal{R}_{t})\mathcal{A}_{1}^{T}\hat{w}_{t-1} + \mu \mathcal{A}_{1}^{T}\sigma_{t}^{xy}$ $\mathcal{A}_{i} \text{ are adjacency matrices.}$ $\mathcal{R}_{t} = bdiag(x_{k,t}x_{k,t}^{T})$ $\sigma_{t}^{xy} = [x_{k,t}y_{k,t}]$

Error System

Unexpectedly, the error system is a two-time scale system
$$\begin{split} &\delta\theta_t = \mu f(t,\theta_{t-1},\xi_{t-1}) & \leftarrow \textit{slow} \\ &\xi_t = S\xi_{t-1} + \mu g(t,\theta_{t-1},\xi_{t-1}) & \leftarrow \textit{fast} \end{split}$$

Under $S \perp F + M = A_1 A_o A_2$ is primitive e.g. strongly connected & ≥ 1 self loop. $\Rightarrow M$ is left stochastic $(1^T M = 1^T)$ and so has a Perron right eigenvector with unit eigenvalue.

- Set $A = \sum_{1}^{N} \alpha_k R_{x,k}$ where α_k depend on the Perron eigenvector.
- Then the averaged system is stable if μ × spec.rad.(A) < 2.

Network LMS Performance

Network Weight Error Variance

Under $S \perp F$ and M primitive.

$$P(\mu) = P_o\mu + o(\mu) \text{ where} AP_o + P_oA = F_{xn}(0) = \sum_{r=1}^{N} \alpha_k^2 F_{xnk}(0) F_{xnk}(0) = \sum_{-\infty}^{\infty} \gamma_r^{x_k} \gamma_r^{n_k}$$

Network MSE

Under $S \perp F$ and M primitive.

$$\mathcal{E}(\mu) = \mu tr(F_{xn}(0)) + o(\mu).$$

White Noise Fallacy

With either white regressors or white noise (or both) the formulae reduce to the <u>all</u> white noise formulae with $F_{xnk}(0) = \gamma_0^{n_k} \gamma_0^{x_k}$. This explains mistaken claims that the <u>all</u> white noise formulae are always correct.

▶ ▲ 臣 ▶ ▲ 臣 ▶

Education Notes*

Averaging

First order averaging is easy to teach but extremely powerful. Two-time scale phenomena are crucial but poorly treated (Kokotovic).

Simulation

Badly done (Ripley). Design is poorly motivated. Tracking is ignored. Scaling is ignored. Visualization is uneven (Tufte).

Hardware

Emerging opportunities for simple physical demos.

Emerging Applications

Networks Internet of Things NextG Communications (Quantum?) Cyber Security (from DSP/Control angle)

New Approaches

IEEE Magazines provide a superb source of projects/implicit teaching approaches + offline via ^{forwards} ASP.

• • • • • • • • • • • •

* Beware the two 'adaptive' imposters in: Statistics; Spatial Signal Processing

The Future of ASP

Strengths

Cheap tracking in real time.
 ⇒ Cheap Tracking offline.
 (noncausal methods are costly).

 TV-parameters are ubiqitos but widely ignored online& office

Opportunities

Streaming Data
Event Triggered Data (Point Processes)
Biomedical → Neuroimaging
and Neuroscience
Internet of Things

Weaknesses

FIR.

⇒<u>Causal</u> basis systems (e.g. Laguerre) - big potential Kernel versions?

DESIGN

What Engineers Know and How They Know It

Challenges

- Machine Learning (McL) and Al communities shows little awareness of Adaptive Signal Processing/Control.
- Their algorithms reflect no training in: Physics/Dynamics/ Stability/Autocorrelation.
- Push back: go to McL conferences!

Conclusions

Design

LMS is the 'gift that keeps giving'. Why? Because it is:

Linear, Adaptive, Design flexible

Analysis

Averaging is simple but can handle any kind of Adaptive algorithm in any scenario. It can be developed heuristically as well as rigorously.

Education

Hands on + Simulation taken seriously + analysis via Averaging + emerging applications

V. Solo (UNSW)

The Future

Big data provides huge opportunities for adaptive algorithms both online and offline.

Physics/Dynamics/Stability/Autocorrelation are central to real time data analysis. Uninformed by these knowledge realms, McL/AI solutions will fall (even catastrophically) short[†]

Vivat ASP/DSP!*

* Universal' algorithms too conservative

LMS < -

ICASSP 2019 10 / 10